forked from Jackie-Bai888/extract_annotation_from_pdf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextracting_word_from_pdf.py
165 lines (153 loc) · 7.07 KB
/
extracting_word_from_pdf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import base64
import copy
import glob
import os
import time
from io import open
import fitz
import requests
from PyPDF4 import PdfFileReader, PdfFileWriter
import shutil
PDF_PATH = r'C:\Users\btt07\Documents\学习\文献\目标识别' #要读取的pdf的路径
PDF_FILE_NAME = 'CornerNet-Lite Efficient Keypoint-Based.pdf' #要读取的pdf文件
SAVE_WORD_FILE = 'word2.txt' #要存放word的文件以及路径
#用PyPDF4进行读取文件
def read_pdf_use_pydpf():
'''
读取pdf,将pdf的mediabox设置为注释框的大小
:return: 注释内容
'''
print('------start read pdf------')
pdf_file_path = PDF_PATH + '\\' + PDF_FILE_NAME
anno_ls = [] # 记录注释内容
with open(pdf_file_path, 'rb') as f:
pdf = PdfFileReader(f)
pdf_output = PdfFileWriter()
number_of_pages = pdf.getNumPages()
for i in range(number_of_pages):
page = pdf.getPage(i)
try:
annots = page['/Annots']
for annot in annots:
'''
拷贝page对象为一个新对象,不然每次都会修改page,从而影响下次的执行
因为page包含了io.TextIOWrapper,所以无法进行深度复制
'''
annot_page = copy.copy(page)
if annot.getObject()['/Subtype'] == '/Underline':
#以下的坐标为一个注释对应一条下划线,如果一个注释对应多条或者对应的是换行的一条的话 将获取不到该单词
quad_point = annot.getObject()['/QuadPoints']
print(quad_point)
if(len(quad_point)<=8):
anno_ls.append(annot.getObject()['/Contents'])
print(anno_ls)
up_l_x, up_l_y, up_r_x, up_r_y, low_l_x, low_l_y, low_r_x, low_r_y = annot.getObject()['/QuadPoints']
print(up_l_x, up_l_y, up_r_x, up_r_y, low_l_x, low_l_y, low_r_x, low_r_y)
'''
mediaBox#对于要修改的mediaBox,需要进行深度复制,不然会影响page的mediaBox
拷贝page和深度拷贝mediaBox 缺一不可
'''
box = copy.deepcopy(annot_page.mediaBox)
box.lowerLeft = (low_l_x, low_l_y)
box.lowerRight = (low_r_x, low_r_y)
box.upperLeft = (up_l_x, up_l_y)
box.upperRight = (up_r_x, up_r_y)
annot_page.mediaBox = box
pdf_output.addPage(annot_page)
except:
# there are no annotations on this page
pass
pdf_output.write(open('mediabox.pdf', 'wb'))
print('------finish read pdf------')
return anno_ls
def pdf_to_img(pdfPath=None):
'''
该方法是将pdf转换为img
这样做是因为如果用读pdf的工具包,读到的内容仍然为pdf整个文本的内容,不是mediabox的内容,所以要将其展示给user的media box转为图片
:param pdfPath:如果之后需要调用该方法且传递参数的话会方便一些
'''
print('------start transform pdf to img------')
pdfPath = 'mediabox.pdf'
imagePath = 'img'
pdfDoc = fitz.open(pdfPath)
for pg in range(pdfDoc.pageCount):
page = pdfDoc[pg]
rotate = int(0) #旋转度数
# 每个尺寸的缩放系数为2,提高分辨率,使图片最短边>15px 才能达到百度接口的识别要求
# 此处若是不做设置,默认图片大小为:792X612, dpi=72
zoom_x = 2 # (1.33333333-->1056x816) (2-->1584x1224)
zoom_y = 2
mat = fitz.Matrix(zoom_x, zoom_y).preRotate(rotate)
pix = page.getPixmap(matrix=mat, alpha=False)
if not os.path.exists(imagePath): # 判断存放图片的文件夹是否存在
os.makedirs(imagePath) # 若图片文件夹不存在就创建
print('creat_'+str(pg)+'.png')
pix.writePNG(imagePath+'/'+'images_%s.png' % pg) # 将图片写入指定的文件夹内
print('------finish transform pdf to img------')
def get_words_from_img():
'''
该函数是调用百度通用文字识别接口进行文字识别(从图片中识别单词)
host中的client_id是文字识别应用中的API Key,client_secret是文字识别中的Secret Key(自己要提前申请文字识别应用)
:return:单词列表
'''
print('------start get words from img------')
host = 'https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=**&client_secret=**'
response = requests.get(host) #获取token
words = []
if response:
access_token = response.json()['access_token']
'''
通用文字识别
'''
request_url = "https://aip.baidubce.com/rest/2.0/ocr/v1/general_basic"
# 二进制方式打开图片文件
ls = glob.glob('img/*.png')
img_name_list = sorted(ls, key=lambda name: int(name.split('.png')[0][11:]))
num = 0 #因为qps最高只能为2,所以就用num统计次数,如果是2的倍数就sleep 1s
for img in img_name_list:
f = open(img, 'rb')
img = base64.b64encode(f.read())
params = {"image": img}
# access_token = ''
request_url = request_url + "?access_token=" + access_token
headers = {'content-type': 'application/x-www-form-urlencoded'}
response = requests.post(request_url, data=params, headers=headers)
if response:
word = response.json()['words_result'][0]['words']
words.append(word)
num += 1
if num % 2 == 0:
time.sleep(1)
print('------finish get words from img------')
return words
def save_word(anno_ls=None, word_ls=None):
'''
将单词和注释相匹配
:param anno_ls:注释列表,和单词列表的index是相对应的
:param word_ls:单词列表
'''
print('------start save words to txt------')
with open(SAVE_WORD_FILE,'w') as f:
for num, word in enumerate(word_ls):
f.write(word+' '+anno_ls[num])
f.write('\n')
print('------finish save words to txt------')
def del_redundant_file():
'''
将所有的过度文件进行删除,给人一种中间无任何输出的感觉
'''
print('------start delete redundant file------')
folder = 'img' #要删除的目录
shutil.rmtree(folder)
os.remove('./mediabox.pdf')
print('------end delete redundant file------')
if __name__ == '__main__':
anno_ls = read_pdf_use_pydpf()
pdf_to_img()
word_ls = get_words_from_img()
print('anno_ls', end='')
print(anno_ls)
print('word_ls', end='')
print(word_ls)
save_word(anno_ls,word_ls)
del_redundant_file()