-
Notifications
You must be signed in to change notification settings - Fork 28
/
evaluate_demo_correspondence.py
executable file
·295 lines (253 loc) · 16.8 KB
/
evaluate_demo_correspondence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import numpy as np
from scipy import ndimage
import os
import argparse
import cv2
import torch
from collections import OrderedDict
from utils import ACTION_TO_ID, compute_demo_dist, get_prediction_vis, compute_cc_dist
from trainer import Trainer
from demo import Demonstration, load_all_demos
import pickle
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-e', '--example_demo', type=str, help='path to example demo')
parser.add_argument('-d', '--imitation_demo', type=str, help='path to imitation demo')
parser.add_argument('-m', '--metric', default='l2', help='metric to evaluate similarity between demo and current env embeddings')
parser.add_argument('-t', '--task_type', default='custom', help='task type')
parser.add_argument('-s', '--stack_snapshot_file', default=None, help='snapshot file to load for the stacking model')
parser.add_argument('-r', '--row_snapshot_file', default=None, help='snapshot file to load for row model')
parser.add_argument('-u', '--unstack_snapshot_file', default=None, help='snapshot file to load for unstacking model')
parser.add_argument('-v', '--vertical_square_snapshot_file', default=None, help='snapshot file to load for vertical_square model')
parser.add_argument('-c', '--cpu', action='store_true', default=False, help='force cpu')
parser.add_argument('-b', '--blend_ratio', default=0.5, type=float, help='how much to weight background vs similarity heatmap')
parser.add_argument('--cycle_consistency', default=False, action='store_true', help='use cycle consistency to get matching action in demo')
parser.add_argument('--depth_channels_history', default=False, action='store_true', help='use depth channel history when passing frames to model?')
parser.add_argument('--viz', dest='save_visualizations', default=False, action='store_true', help='store depth heightmaps with imitation signal')
parser.add_argument('--write_embed', dest='write_embed', default=False, action='store_true', help='write embeddings to disk')
parser.add_argument('--save_neighborhood', dest='save_neighborhood', default=False, action='store_true', help='save neighborhood around demo action')
parser.add_argument('--neighborhood_size', dest='neighborhood_size', default=5, type=int, help='size of neighborhood to save')
args = parser.parse_args()
# if we want to save neighborhood, make sure some other args are set
if args.save_neighborhood:
args.cycle_consistency = True
args.write_embed = True
# TODO(adit98) may need to make this variable
# Cols: min max, Rows: x y z (define workspace limits in robot coordinates)
workspace_limits = np.asarray([[-0.724, -0.276], [-0.224, 0.224], [-0.0001, 0.5]])
# create viz directory in imitation_demo folder
if args.save_visualizations:
if not os.path.exists(os.path.join(args.imitation_demo, 'correspondences')):
os.makedirs(os.path.join(args.imitation_demo, 'correspondences'))
if args.write_embed:
if not os.path.exists(os.path.join(args.example_demo, 'embeddings')):
os.makedirs(os.path.join(args.example_demo, 'embeddings'))
# create both demo classes
example_demos = load_all_demos(demo_path=args.example_demo, check_z_height=False,
task_type=args.task_type)
imitation_demo = Demonstration(path=args.imitation_demo, demo_num=0,
check_z_height=False, task_type=args.task_type)
# set whether place common sense masks should be used
# TODO(adit98) make this a cmd line argument and think about whether it should ever be set
if args.task_type == 'unstack':
place_common_sense = False
demo_mask = True
place_dilation = 0.05
elif args.task_type == 'stack':
demo_mask = True
place_common_sense = True
place_dilation = 0.00
else:
place_common_sense = True
demo_mask = True
place_dilation = 0.05
# Initialize trainer(s)
stack_trainer, row_trainer, unstack_trainer, vertical_square_trainer = None, None, None, None
# load stacking if provided
if args.stack_snapshot_file is not None:
stack_trainer = Trainer(method='reinforcement', push_rewards=True, future_reward_discount=0.5,
is_testing=True, snapshot_file=args.stack_snapshot_file,
force_cpu=args.cpu, goal_condition_len=0, place=True,
pretrained=True, flops=False, network='densenet',
common_sense=True, place_common_sense=place_common_sense,
show_heightmap=False, place_dilation=0.00,
common_sense_backprop=True, trial_reward='spot',
num_dilation=0)
# load row making if provided
if args.row_snapshot_file is not None:
row_trainer = Trainer(method='reinforcement', push_rewards=True, future_reward_discount=0.5,
is_testing=True, snapshot_file=args.row_snapshot_file,
force_cpu=args.cpu, goal_condition_len=0, place=True,
pretrained=True, flops=False, network='densenet',
common_sense=True, place_common_sense=place_common_sense,
show_heightmap=False, place_dilation=place_dilation,
common_sense_backprop=True, trial_reward='spot',
num_dilation=0)
# load unstack making if provided
if args.unstack_snapshot_file is not None:
unstack_trainer = Trainer(method='reinforcement', push_rewards=True, future_reward_discount=0.5,
is_testing=True, snapshot_file=args.unstack_snapshot_file,
force_cpu=args.cpu, goal_condition_len=0, place=True,
pretrained=True, flops=False, network='densenet',
common_sense=True, place_common_sense=place_common_sense,
show_heightmap=False, place_dilation=place_dilation,
common_sense_backprop=True, trial_reward='spot',
num_dilation=0)
# load vertical_square making if provided
if args.vertical_square_snapshot_file is not None:
vertical_square_trainer = Trainer(method='reinforcement', push_rewards=True, future_reward_discount=0.5,
is_testing=True, snapshot_file=args.vertical_square_snapshot_file,
force_cpu=args.cpu, goal_condition_len=0, place=True,
pretrained=True, flops=False, network='densenet',
common_sense=True, place_common_sense=place_common_sense,
show_heightmap=False, place_dilation=place_dilation,
common_sense_backprop=True, trial_reward='spot', num_dilation=0)
if stack_trainer is None and row_trainer is None and unstack_trainer is None and vertical_square_trainer is None:
raise ValueError("Must provide at least one trained model")
# iterate through action_dict and visualize example signal on imitation heightmaps
# skip last key because there is no grasp/place action associated with it
action_keys = sorted(example_demos[0].action_dict.keys())[:-1]
example_actions_dict = {}
for k in action_keys:
if k not in example_actions_dict:
example_actions_dict[k] = {}
for action in ['grasp', 'place']:
if action not in example_actions_dict[k]:
example_actions_dict[k][action] = {}
for ind, d in enumerate(example_demos):
# get action embeddings from example demo
if ind not in example_actions_dict[k][action]:
example_action_row, example_action_stack, example_action_unstack, example_action_vertical_square, _, demo_action_ind = \
d.get_action(workspace_limits, action, k, stack_trainer=stack_trainer, row_trainer=row_trainer,
unstack_trainer=unstack_trainer, vertical_square_trainer=vertical_square_trainer,
use_hist=args.depth_channels_history, demo_mask=True,
cycle_consistency=args.cycle_consistency)
example_actions_dict[k][action][ind] = [example_action_row, example_action_stack,
example_action_unstack, example_action_vertical_square, demo_action_ind]
# run the correspondence if not writing embeddings
if not args.write_embed:
if action == 'grasp':
im_color, im_depth = imitation_demo.get_heightmaps(action,
imitation_demo.action_dict[k]['grasp_image_ind'], use_hist=args.depth_channels_history)
else:
im_color, im_depth = imitation_demo.get_heightmaps(action,
imitation_demo.action_dict[k]['place_image_ind'], use_hist=args.depth_channels_history)
# create filenames to be saved
depth_filename = os.path.join(args.imitation_demo, 'correspondences',
str(k) + '.' + action + '.depth.png')
color_filename = os.path.join(args.imitation_demo, 'correspondences',
str(k) + '.' + action + '.color.png')
# run forward pass for imitation_demo
stack_preds, row_preds, unstack_preds, vertical_square_preds = None, None, None, None
# get stack features if stack_trainer is provided
if stack_trainer is not None:
# to get vector of 64 vals, run trainer.forward with keep_action_feat
stack_push, stack_grasp, stack_place = stack_trainer.forward(im_color,
im_depth, is_volatile=True, keep_action_feat=True, demo_mask=True)[:3]
# fill all masked arrays (convert to regular np arrays)
stack_push, stack_grasp, stack_place = stack_push.filled(0.0), \
stack_grasp.filled(0.0), stack_place.filled(0.0)
# get row features if row_trainer is provided
if row_trainer is not None:
# to get vector of 64 vals, run trainer.forward with keep_action_feat
row_push, row_grasp, row_place = row_trainer.forward(im_color,
im_depth, is_volatile=True, keep_action_feat=True, demo_mask=True)[:3]
# fill all masked arrays (convert to regular np arrays)
row_push, row_grasp, row_place = row_push.filled(0.0), \
row_grasp.filled(0.0), row_place.filled(0.0)
# get unstack features if unstack_trainer is provided
if unstack_trainer is not None:
# to get vector of 64 vals, run trainer.forward with keep_action_feat
unstack_push, unstack_grasp, unstack_place = unstack_trainer.forward(im_color,
im_depth, is_volatile=True, keep_action_feat=True, demo_mask=True)[:3]
# fill all masked arrays (convert to regular np arrays)
unstack_push, unstack_grasp, unstack_place = unstack_push.filled(0.0), \
unstack_grasp.filled(0.0), unstack_place.filled(0.0)
# get vertical_square features if vertical_square_trainer is provided
if vertical_square_trainer is not None:
# to get vector of 64 vals, run trainer.forward with keep_action_feat
vertical_square_push, vertical_square_grasp, vertical_square_place = \
vertical_square_trainer.forward(im_color, im_depth,
is_volatile=True, keep_action_feat=True, demo_mask=True)[:3]
# fill all masked arrays (convert to regular np arrays)
vertical_square_push, vertical_square_grasp, vertical_square_place = \
vertical_square_push.filled(0.0), vertical_square_grasp.filled(0.0), vertical_square_place.filled(0.0)
# TODO(adit98) add logic for pushing here
if action == 'grasp':
if stack_trainer is not None:
stack_preds = stack_grasp
if row_trainer is not None:
row_preds = row_grasp
if unstack_trainer is not None:
unstack_preds = unstack_grasp
if vertical_square_trainer is not None:
vertical_square_preds = vertical_square_grasp
else:
if stack_trainer is not None:
stack_preds = stack_place
if row_trainer is not None:
row_preds = row_place
if unstack_trainer is not None:
unstack_preds = unstack_place
if vertical_square_trainer is not None:
vertical_square_preds = vertical_square_place
print("Evaluating distance for stack height:", k, "| Action:", action)
# rearrange example actions dictionary into (P, D) array where P is number of policies, D # of demos
example_actions = np.array([*example_actions_dict[k][action].values()], dtype=object).T
# extract demo action inds
demo_action_inds = example_actions[-1].tolist()
# store preds we want to use (after leave one out) in preds, and get relevant example actions
# order of example actions is row, stack, unstack, vertical square
if args.task_type == 'row':
preds = [stack_preds, unstack_preds, vertical_square_preds]
example_actions = example_actions[1:-1].tolist()
elif args.task_type == 'stack':
preds = [row_preds, unstack_preds, vertical_square_preds]
example_actions = example_actions[[0, 2, 3]].tolist()
elif args.task_type == 'unstack':
preds = [row_preds, stack_preds, vertical_square_preds]
example_actions = example_actions[[0, 1, 3]].tolist()
elif args.task_type == 'vertical_square':
preds = [row_preds, stack_preds, unstack_preds]
example_actions = example_actions[:3].tolist()
else:
raise NotImplementedError(args.task_type + ' is not implemented.')
if not args.cycle_consistency:
# evaluate distance based action mask - leave one out is above
im_mask, match_ind, selected_policy = compute_demo_dist(preds=preds, example_actions=example_actions,
metric=args.metric)
else:
# evaluate distance based action mask with cycle consistency
im_mask, match_ind, selected_policy = compute_cc_dist(preds=preds, example_actions=example_actions,
demo_action_inds=demo_action_inds, valid_depth_heightmap=im_depth,
metric=args.metric, cc_match=False)
if args.save_visualizations:
# fix dynamic range of im_depth
im_depth = (im_depth * 255 / np.max(im_depth)).astype(np.uint8)
# visualize with rotation, match_ind
depth_canvas = get_prediction_vis(im_mask, im_depth, match_ind, blend_ratio=args.blend_ratio)
rgb_canvas = get_prediction_vis(im_mask, im_color, match_ind, blend_ratio=args.blend_ratio)
# write blended images
cv2.imwrite(depth_filename, depth_canvas)
cv2.imwrite(color_filename, rgb_canvas)
if args.write_embed:
# pickle dictionary
if not args.cycle_consistency:
name = 'embed_dict_single.pickle'
elif args.save_neighborhood:
# get neighborhood around embedding
name = 'embed_dict_neighb.pickle'
for a in example_actions_dict.keys():
for b in example_actions_dict[a].keys():
for c in example_actions_dict[a][b].keys():
tmp = example_actions_dict[a][b][c]
demo_action = tmp[-1]
for i in range(len(tmp)):
tmp[i] = tmp[demo_action[0], :,
demo_action[1] - args.neighborhood_size:demo_action[1] + args.neighborhood_size + 1,
demo_action[2] - args.neighborhood_size:demo_action[2] + args.neighborhood_size + 2]
else:
name = 'embed_dict.pickle'
file_path = os.path.join(args.example_demo, 'embeddings', name)
with open(file_path, 'wb') as f:
pickle.dump(example_actions_dict, f)