-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathassign06.class.violet.html
1541 lines (1541 loc) · 100 KB
/
assign06.class.violet.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<HTML>
<HEAD>
<META name="description"
content="Violet UML Editor cross format document" />
<META name="keywords" content="Violet, UML" />
<META charset="UTF-8" />
<SCRIPT type="text/javascript">
function switchVisibility() {
var obj = document.getElementById("content");
obj.style.display = (obj.style.display == "block") ? "none" : "block";
}
</SCRIPT>
</HEAD>
<BODY>
This file was generated with Violet UML Editor 2.1.0.
( <A href=# onclick="switchVisibility()">View Source</A> / <A href="http://sourceforge.net/projects/violet/files/violetumleditor/" target="_blank">Download Violet</A> )
<BR />
<BR />
<SCRIPT id="content" type="text/xml"><![CDATA[<ClassDiagramGraph id="1">
<nodes id="2">
<ClassNode id="3">
<children id="4"/>
<location class="Point2D.Double" id="5" x="270.0" y="530.0"/>
<id id="6" value="13b7c592-db55-462e-9547-20b780d22be9"/>
<revision>1</revision>
<backgroundColor id="7">
<red>255</red>
<green>255</green>
<blue>255</blue>
<alpha>255</alpha>
</backgroundColor>
<borderColor id="8">
<red>0</red>
<green>0</green>
<blue>0</blue>
<alpha>255</alpha>
</borderColor>
<textColor reference="8"/>
<name id="9" justification="1" size="3" underlined="false">
<text>UserAccount</text>
</name>
<attributes id="10" justification="0" size="4" underlined="false">
<text>loggedIn : Boolean
userName : String
password : String
accountType : String
email : String
realName : String
address : String
phoneNumber : int</text>
</attributes>
<methods id="11" justification="0" size="4" underlined="false">
<text>login() : void
verifyLogin(): Boolean
logOut() : void
edit(userName) : void
addVehicle(userName) : void
</text>
</methods>
</ClassNode>
<ClassNode id="12">
<children id="13"/>
<location class="Point2D.Double" id="14" x="580.0" y="390.0"/>
<id id="15" value="e396d8cd-45f3-4c7e-9473-9d92edcbb5cb"/>
<revision>1</revision>
<backgroundColor reference="7"/>
<borderColor reference="8"/>
<textColor reference="8"/>
<name id="16" justification="1" size="3" underlined="false">
<text>Courier</text>
</name>
<attributes id="17" justification="0" size="4" underlined="false">
<text>availibility : Boolean
licenseID : int
licenseExpiration : String
insured : Boolean
insuranceExpiration : int
insuranceCoverage : int[]
tsaVerified : Boolean
payHistory : double
payEstimate : double
balance : double</text>
</attributes>
<methods id="18" justification="0" size="4" underlined="false">
<text>addVehicle(vehicleInfo) : void
acceptJob(jobInfo) : Boolean
updateLocation() : void
calculateTotalPayment() : double
approveInvoice(): Boolean</text>
</methods>
</ClassNode>
<ClassNode id="19">
<children id="20"/>
<location class="Point2D.Double" id="21" x="630.0" y="750.0"/>
<id id="22" value="c2c42570-77ac-44c5-a18e-bce2acd9ac73"/>
<revision>1</revision>
<backgroundColor id="23">
<red>255</red>
<green>255</green>
<blue>255</blue>
<alpha>255</alpha>
</backgroundColor>
<borderColor id="24">
<red>0</red>
<green>0</green>
<blue>0</blue>
<alpha>255</alpha>
</borderColor>
<textColor reference="24"/>
<name id="25" justification="1" size="3" underlined="false">
<text>Dispatcher</text>
</name>
<attributes id="26" justification="0" size="4" underlined="false">
<text></text>
</attributes>
<methods id="27" justification="0" size="4" underlined="false">
<text>queue() : void
pay(userName)</text>
</methods>
</ClassNode>
<ClassNode id="28">
<children id="29"/>
<location class="Point2D.Double" id="30" x="890.0" y="390.0"/>
<id id="31" value="9d8dda09-9d62-47e3-b143-c0f49d9f114b"/>
<revision>1</revision>
<backgroundColor reference="23"/>
<borderColor reference="24"/>
<textColor reference="24"/>
<name id="32" justification="1" size="3" underlined="false">
<text>Vehicle</text>
</name>
<attributes id="33" justification="0" size="4" underlined="false">
<text>licensePlate : String
year : int
make : String
model : String
type : String</text>
</attributes>
<methods id="34" justification="0" size="4" underlined="false">
<text>inUse() ; Boolean</text>
</methods>
</ClassNode>
<ClassNode id="35">
<children id="36"/>
<location class="Point2D.Double" id="37" x="1060.0" y="500.0"/>
<id id="38" value="1d8a4217-33e9-4754-95bc-868342e933eb"/>
<revision>1</revision>
<backgroundColor reference="23"/>
<borderColor reference="24"/>
<textColor reference="24"/>
<name id="39" justification="1" size="3" underlined="false">
<text>Job</text>
</name>
<attributes id="40" justification="0" size="4" underlined="false">
<text>destinationAddress : String
vehicleType : String
tsaVerified : Boolean
recipientName: String
recipientPhone : int
distanceMi : int
payEstimateForJob : int
payActualForJob : int
courierPaid : Boolean
pickupTime : int
dropoffTime : int
actualTime : int
signed : Boolean</text>
</attributes>
<methods id="41" justification="0" size="4" underlined="false">
<text>signOff() : void
close() : void
findRoute() : void
findNearestCourier() : Courier
calculatePayment(): double</text>
</methods>
</ClassNode>
<ClassNode id="42">
<children id="43"/>
<location class="Point2D.Double" id="44" x="40.0" y="120.0"/>
<id id="45" value="5be01121-9f17-4740-b5da-229d6ecaab65"/>
<revision>1</revision>
<backgroundColor id="46">
<red>255</red>
<green>255</green>
<blue>255</blue>
<alpha>255</alpha>
</backgroundColor>
<borderColor id="47">
<red>0</red>
<green>0</green>
<blue>0</blue>
<alpha>255</alpha>
</borderColor>
<textColor reference="47"/>
<name id="48" justification="1" size="3" underlined="false">
<text>DataController</text>
</name>
<attributes id="49" justification="0" size="4" underlined="false">
<text></text>
</attributes>
<methods id="50" justification="0" size="4" underlined="false">
<text>populateUserAccount(UserAccount) : void
populateCourier(Courier) : void
populateDispatcher(Dispatcher) : void
populateJob(Job) : void
getJobs(UserAccount) : hashMap<jobID, Job></text>
</methods>
</ClassNode>
<NoteNode id="51">
<children id="52"/>
<location class="Point2D.Double" id="53" x="610.0" y="180.0"/>
<id id="54" value="cd47510e-9fe3-423e-998f-586db26c3df8"/>
<revision>1</revision>
<backgroundColor id="55">
<red>255</red>
<green>255</green>
<blue>255</blue>
<alpha>255</alpha>
</backgroundColor>
<borderColor id="56">
<red>0</red>
<green>0</green>
<blue>0</blue>
<alpha>255</alpha>
</borderColor>
<textColor reference="56"/>
<text id="57" justification="0" size="4" underlined="false">
<text>attribute retrieval</text>
</text>
<color id="58">
<red>255</red>
<green>228</green>
<blue>181</blue>
<alpha>255</alpha>
</color>
</NoteNode>
<NoteNode id="59">
<children id="60"/>
<location class="Point2D.Double" id="61" x="210.0" y="470.0"/>
<id id="62" value="ca0f95c2-7182-4bb7-ae5a-f1c9be6c618a"/>
<revision>1</revision>
<backgroundColor reference="55"/>
<borderColor reference="56"/>
<textColor reference="56"/>
<text id="63" justification="0" size="4" underlined="false">
<text>user superclass</text>
</text>
<color reference="58"/>
</NoteNode>
<InterfaceNode id="64">
<children id="65"/>
<location class="Point2D.Double" id="66" x="750.0" y="230.0"/>
<id id="67" value="a79f9a6c-bb1a-4613-86c4-510c08f5f99a"/>
<revision>1</revision>
<backgroundColor id="68">
<red>255</red>
<green>255</green>
<blue>255</blue>
<alpha>255</alpha>
</backgroundColor>
<borderColor id="69">
<red>0</red>
<green>0</green>
<blue>0</blue>
<alpha>255</alpha>
</borderColor>
<textColor reference="69"/>
<name id="70" justification="1" size="3" underlined="false">
<text>«interface»
DataController</text>
</name>
<methods id="71" justification="0" size="4" underlined="false">
<text>populate()
save()</text>
</methods>
</InterfaceNode>
</nodes>
<edges id="72">
<InheritanceEdge id="73">
<start class="ClassNode" reference="12"/>
<end class="ClassNode" reference="3"/>
<startLocation class="Point2D.Double" id="74" x="140.0" y="10.0"/>
<endLocation class="Point2D.Double" id="75" x="30.0" y="150.0"/>
<transitionPoints id="76"/>
<id id="77" value="8e866c53-79e7-4dbb-b417-b305d1791f5c"/>
<revision>1</revision>
<bentStyle name="AUTO"/>
<startLabel></startLabel>
<middleLabel></middleLabel>
<endLabel></endLabel>
</InheritanceEdge>
<InheritanceEdge id="78">
<start class="ClassNode" reference="19"/>
<end class="ClassNode" reference="3"/>
<startLocation class="Point2D.Double" id="79" x="20.0" y="40.0"/>
<endLocation class="Point2D.Double" id="80" x="60.0" y="240.0"/>
<transitionPoints id="81"/>
<id id="82" value="e1b60d4a-758e-471d-96e4-69f9da43fce5"/>
<revision>1</revision>
<bentStyle name="AUTO"/>
<startLabel></startLabel>
<middleLabel></middleLabel>
<endLabel></endLabel>
</InheritanceEdge>
<AggregationEdge id="83">
<start class="ClassNode" reference="35"/>
<end class="ClassNode" reference="19"/>
<startLocation class="Point2D.Double" id="84" x="30.0" y="50.0"/>
<endLocation class="Point2D.Double" id="85" x="60.0" y="90.0"/>
<transitionPoints id="86"/>
<id id="87" value="3583e206-c949-4f95-95d8-152bfeee7998"/>
<revision>1</revision>
<bentStyle name="AUTO"/>
<startLabel></startLabel>
<middleLabel></middleLabel>
<endLabel>0...</endLabel>
</AggregationEdge>
<AggregationEdge id="88">
<start class="ClassNode" reference="12"/>
<end class="ClassNode" reference="35"/>
<startLocation class="Point2D.Double" id="89" x="180.0" y="240.0"/>
<endLocation class="Point2D.Double" id="90" x="30.0" y="110.0"/>
<transitionPoints id="91"/>
<id id="92" value="02f03689-962b-40ee-90c1-26a181b774d5"/>
<revision>1</revision>
<bentStyle name="AUTO"/>
<startLabel></startLabel>
<middleLabel></middleLabel>
<endLabel>1</endLabel>
</AggregationEdge>
<AggregationEdge id="93">
<start class="ClassNode" reference="12"/>
<end class="ClassNode" reference="19"/>
<startLocation class="Point2D.Double" id="94" x="40.0" y="260.0"/>
<endLocation class="Point2D.Double" id="95" x="30.0" y="30.0"/>
<transitionPoints id="96"/>
<id id="97" value="e7453515-c8e6-46ae-82a4-4edaa3bafe4b"/>
<revision>1</revision>
<bentStyle name="AUTO"/>
<startLabel></startLabel>
<middleLabel></middleLabel>
<endLabel>0...</endLabel>
</AggregationEdge>
<InterfaceInheritanceEdge id="98">
<start class="ClassNode" reference="3"/>
<end class="InterfaceNode" reference="64"/>
<startLocation class="Point2D.Double" id="99" x="120.0" y="230.0"/>
<endLocation class="Point2D.Double" id="100" x="70.0" y="80.0"/>
<transitionPoints id="101">
<Point2D.Double id="102" x="370.0" y="290.0"/>
</transitionPoints>
<id id="103" value="0dfe661b-0f86-438c-86de-4950e61b8ec5"/>
<revision>1</revision>
<bentStyle name="FREE"/>
<startLabel></startLabel>
<middleLabel></middleLabel>
<endLabel></endLabel>
</InterfaceInheritanceEdge>
<InterfaceInheritanceEdge id="104">
<start class="ClassNode" reference="35"/>
<end class="InterfaceNode" reference="64"/>
<startLocation class="Point2D.Double" id="105" x="60.0" y="300.0"/>
<endLocation class="Point2D.Double" id="106" x="90.0" y="60.0"/>
<transitionPoints id="107">
<Point2D.Double id="108" x="1160.0" y="290.0"/>
</transitionPoints>
<id id="109" value="2574dcba-d01b-4825-9f02-90645525341e"/>
<revision>1</revision>
<bentStyle name="FREE"/>
<startLabel></startLabel>
<middleLabel></middleLabel>
<endLabel></endLabel>
</InterfaceInheritanceEdge>
<AggregationEdge id="110">
<start class="ClassNode" reference="28"/>
<end class="ClassNode" reference="12"/>
<startLocation class="Point2D.Double" id="111" x="20.0" y="70.0"/>
<endLocation class="Point2D.Double" id="112" x="130.0" y="60.0"/>
<transitionPoints id="113"/>
<id id="114" value="23316128-5ec2-435d-a6b8-7f66f30050cb"/>
<revision>1</revision>
<bentStyle name="AUTO"/>
<startLabel></startLabel>
<middleLabel></middleLabel>
<endLabel>1...</endLabel>
</AggregationEdge>
<InterfaceInheritanceEdge id="115">
<start class="ClassNode" reference="28"/>
<end class="InterfaceNode" reference="64"/>
<startLocation class="Point2D.Double" id="116" x="100.0" y="50.0"/>
<endLocation class="Point2D.Double" id="117" x="100.0" y="60.0"/>
<transitionPoints id="118"/>
<id id="119" value="ce3c0c6d-db6f-468a-b50d-10d30a3b10c0"/>
<revision>1</revision>
<bentStyle name="AUTO"/>
<startLabel></startLabel>
<middleLabel></middleLabel>
<endLabel></endLabel>
</InterfaceInheritanceEdge>
</edges>
</ClassDiagramGraph>]]></SCRIPT>
<BR />
<BR />
<IMG alt="embedded diagram image" src="
AIOgI6BimKRFRZPU/6MmCoTU2CpIvf5NIl5SjVKNPU0bRYV4O5pACd5yYnNOPbnY9Hh+mgZM88cS
0z725JRYtajRKqCiQUUuKsgd/98f63SfyczsmcHrgO/Xw+OzZs2efWPttdfHvWfzrW8BuNduAAAA
AJ0c41rg3h+E7AQAAACQLQGQLQEAAMCwlnEtQLYEAAAAyJZAZz8I//YP7A0AAACQLQGQLQEAAEC2
BEC2BAAAAMiWANkSAAAAIFsCZEsAAACAbAmAbAkAAACyJQCyJQAAAEC2BMiWAAAAANkSIFsCAAAA
ZEsAZEsAAACQLdkd/7tDLMsA2RIAAAC4mWypkpWHh0fPnj2/853vvPLKK1VVVR2NZ64oKytLSUkJ
DQ318vLq1atXQkLC7QqHZEuQLQEAAAC3yJZSOH/+/MaNGx988MHIyMhLly7d3nQnwVJSpcFg+Oij
j2pra48cOTJt2jSyJciWAAAAQFfLlsr69evl5Y9//GOt5pe//KW6sBkSEjJ37tyrV69qn9I4nljM
mjVL6rds2WK7Aq2trZJpH3nkEYm1ZrP5zTfflBrLdVO8vLyGDBmyf/9+vaXbVjqds225ra3t7bff
jo6O7tGjR1RU1KZNm6RGb/4A2RIAAABkS/vZsri4WF727t1bq3n11VcPHDhQX1//zjvvyFsLFiyw
+0HHE4eGhsrLs2fP2q5Adna2vLVo0aLq6urU1FQpSwi0XMTzzz8vb73//vtSlqCot3RVM3PmzJqa
GhfnbFuW9Cvl5557TmaSlpYm5bfeektv/gDZEgAAAGRL+9lSYqG6SGg7ZUtLi7wVFhbmIFvqTezp
6SkvGxoabKc0m83yVllZmZQlfEpZaiwXce7cOSk3NTWpK6KOs+XXX3/t+pxty5JdpXzy5EkpSyKV
8qOPPqo3f4BsCQAAALKl/Wyprlv26dNHvfziiy/i4+ODgoIk1GlP/dFLdw4mdnDd0tfXV96S6Cjl
xsZGKT/44IN2F+H4S5K2NS7O2bLs7e1tde+rFrO5FRZkSwAAAMDVbLlu3TrL71tGRETIy48//lgS
2rVr1xynOwcTp6SkSHnr1q22KzBw4EBXri7eRLZ0cc6W5X79+mlXSh3vKIBsCQAAALKlncj09ddf
2z4n1mQyybt//OMfr169qr6yqM0nKChIysXFxdqsHEws0a5Xr14BAQGSPCV2Hjx4cPr06eqtNWvW
qG9F1tTUqE9lZ2c7zZa2S7fNfi7O2bKsvqI5derUiooK2Yo9e/ZofyuFbAmyJQAAAOAkW3bv3t3P
zy86OvpnP/uZ5d+3/PzzzwcPHqy+LWn1iNQtW7YYjUbLGgcTizNnzrzwwguSMGWCwMDA+Ph4Vd/c
3Lx69eqBAwf6+vpGRUVlZWXZfZrrDZuH7lgt3Tb7uThnqw9+8MEHjz/+uF+7sWPHfvrpp2RLkC0B
AAAAJ9kSANkSAAAAIFsCZEsAAACAbAmQLQEAAACyJQCyJQAAAMiWAMiWAAAAANkSIFsCAAAAZEuA
bAkAAACQLQGQLQEAAEC2BEC2BAAAAMiWANkSAAAAIFsCZEsAAACAbAmAbAkAAACyJQCyJQAAAEC2
BMiWAAAAANkSIFsCAAAAZEsAZEsAAADcF9kSwL1FtgQAAEBXyJbsBeDeHoRkSwAAAJAtAZAtAQAA
wLCWbAmQLQEAAACyJUC2BAAAAMiWANmSbAkAAACyJQCyJQAAAMiW7AWAbAkAAACQLQGyJQAAAEC2
BMiWZEsAAACQLQGQLQEAAEC2BEC2BAAAAMiWANkSAAAAIFsCZEuyJQAAAMiWAMiWAAAAIFsCIFsC
AAAAZEuAbAkAAACQLQGyJdkSAAAAZEsAZEsAAACQLQGQLQHcJ7766it2AgDg9mdLAPcW2RLgdHWX
9ezZMy8vj3YFALjNJ2v2AnBvD0KyJeDKkXLjXB4/t+tH9qefnx/xEgBAtgTIlgDZkp9bypY7d+4k
XgIAyJYA2RIgW/JzS9lS9irxEgBAtgTIlgDZkp9bzZbESwAA2RIgWwJkS35uQ7YkXgIAyJYA2RIg
W/JzG7Il8RIAQLYEyJYA2ZKf25AtiZcAALIlQLYEyJb83Ey2tMvDw+Orr76ivQEAyJYA2RIgW/Jz
S5mzoqKC9gYAIFsCZEuAbMnPLWVL6YuIlwAAsiVAtgTIlvzcarYkXgIAyJYA2RIgW/JzG7IlPRIA
gGwJkC0BsiU/ZEsAQNfNloTYm7Zy5cqJEyfen9uemJiYkZFxD4awZEvg/siW92FkdbzJ9EgAgK6Q
LV1cE9vJbuMmDGx378dPFi5fvhwYGHj+/Pn7c/PLyspk86urq+9mmyRbAp0xW1pN4DRB3Vy2vHNZ
1MUVJlsCAMiWnSBb7t+/39zuz3/+s/uEq6ysrLlz5963my9SUlI2btx4b9eBbAl0sWx505ntXmVL
rlsCADpTtpTC+vXrg4ODAwICFixY0NjYqOobGhoWLVrUq50U5KXj6a3G5ZbzV4UTJ04kJyfLp/z8
/JKSktST6Cz/cLOarLW1ddWqVREREQaDQdJFbW2t03C1d+/emJgYHx+f8PDwbdu2OZ2PxDaTydSt
WzdV8+KLL65bt27t2rU//vGPtZk3NzcvX748LCzM39//jTfecFDpYEfp7ZCtW7fKqsoKDx8+vKio
yO5+iIuL++STT1zJll1y80Vubm5CQoIrrfnQoUP9+/dva2tTL6UgLw8fPux03aT1vvTSS9ImZYIN
GzaQLQF3zpYn/vh28rMjAvy/7fftB5O+//9U/G2HSkT/23vYvFQ1WSvnmkKD/m+n983rluuXpgQH
+csMF8z8QWPpRw6Squ1sW8/mrvrZcxF9exke6pky5enav/+n3bRmuWi7H3F9hW0/fuj/29Q/LKSt
LFdNIAV5eTh/k90dRbYEANylbBkfH3+unRTS09NVvaQIeVnWbsyYMStWrHA8vdNsOWjQoIKCguvX
r9fU1CxcuHDOnDl2P5iZmSmxqqSkpKqqasaMGUuWLHEarkJDQ3fu3CnJ4cyZM7Nnz3Y6nwkTJmj3
msqnAgMD1WZKQYsfq1evHj169KlTp+TjixcvdlDpYEfp7ZDExMTS0lLJexkZGSNGjLA7vdFovHjx
oivZsktuvrhw4UJwcLD9gaaNoUOHSsZW5fz8/GHDhrmybitXrlSNWU1AtgTcOVsOeqRfwW/XXT+1
q+ar3y5M+eGcac+4ct3y/3Z6zww/f+Bd23ti40cNOfflv8uPFNKX/L+O52ZVn7liTtzIISV//teq
ox/OmDhmyYtJdtOa5aL1PuLiCtv9+NDoAXt/s0ZNkL9jzbBBka7vKLIlAOCOZMujR4+q8pEjRwYM
GKDK/fv31+qLioq0er3pnWZLS1euXDGZTHYnMJvNx48f19JFeHi403DVt2/fnJycs2fPujif06dP
a5N9+OGHTz/9tCpLzPjtb3+rypGRkeqSmiW7lQ52lN4OKS8vV+W6ujpfX1+703t6ejY1NbmSLbvk
5t9ov6jo5eXlYrbctGnT5MmTVXnSpEmbN292Zd2kxnICsiXgztnS8ufKV/9hCg1yMVue/uLf7GbF
owVbVflIwZYB4aEdypbmSNPxz/9FlS8cfD/cFGw3rVkuWu8jLq6w3Y9vWj1/8g9HqcpJPxi5ec1L
ru8osiUA4I5ky/r6elWWgo+PjypLwW693vROs2VhYWFsbKzBYFA3/3Tv3t3uByVsdG/n4eEhb8m/
WtbS7r+1Ch4HDhxITEwMDAwcOHDgnj17HM9HytrNk+LZZ5997733VPndd98dN26c7eZrnFZ2aIc4
rjcajZIJLaPmfbX5N/SvW9pVXV3t5+dXUVFx6dIlKaiHADldN6sJyJaAO2fLwj3ZsSMGGx7q+Y+T
iIeL2VK7a9QqK9YX71JlKfh4P9ChbOnr84CsQHsX2629j+1mN61ZLlrvIy6usN2PVx/7rd+3H6z4
245Lhz+Qgrx0fUeRLQEAdyRbapdupNCh65aW08swva6uTpXLy8ttM4NMuX379srKypaWFvlXq9e+
+KdERUWVlpbarnFkZOThw4e1l4cOHXr44YctJ5DIlJubGxIS4ng+lvlB0otkNsuvu8hLlegkp9le
o7NbqbejnO4Qq5dW+yEuLi4vL+++3fwbHfm+pTJt2rTXX399w4YN06dPd9qGtTZpeRGebAm4c7Yc
EB66PXtJ5ZHftJz5WP7V6tX3ErUfq5cOsqJ23VIK2nVLCZl1J/+PKpcffE9vKVEDTKX/9a8denaO
3kdcXGG9j09LfOr1tNkbls2anjja8Y4iWwIA7ka2lBG8+v6kFLTvpC1btkz7rlpsbGxaWprj6UeM
GJGRkVFbW1tSUjJ+/HjbLCGxZ9euXQ0NDcXFxcnJyVq90Wg8duyYtmbZ2dmyXKlpbGyUM9yUKVNU
/WuvvTZq1CgJAPX19fKvlNesWaPemjp1qiQEmV7SSO/evR3PxzI/ZGZmvvDCC5b7ZdasWVlZWVKQ
mY8ePVpW1fK7hXYr9XaU0x1i9dJqP8hqyMpoL++3zVcrk5OT4zgeW8rPz3+4nfbFSwdtWBWWL1+u
NWaZkmwJuHO2DDEadv0qraFkd/Gf30l+doRWbwx86Nhnb2kZyeqlg2yZ8NRQ9X1LKax4eZqqH/H4
oxk/nVH79/8s+fO/jk/4nt5SsjNejB81RGoaSz/6297NU8Y/6TRb6n3ExRXW+3j+jjUP9+8jP9oX
L/V2FNkSAHA3sqV67qvBYJg/f772NBfJMKmpqeoZm1LQbh3Um76oqGj48OHqaaVbtmyxzRJ5eXlR
UVFeXl5hYWGSGbR6STj+/v6Wz4mVd81ms7e3d3R09O7du1V9U1OT5KvIyEhZhPy7atWq5uZm9daO
HTtkzlIfExNTUFDgeD6W+WHQoEGfffaZ5X7Zt2/f4MGD1eKWLl1qMplkM1Xc0qvU21FOd4jVS6v9
UFlZGRgYKJnn/tx82XDZfAmxrmfLtra2iHbaTb8O2rAqSOudN2+ebI60Z54TC7h5tsz79/SoASYv
T8+wPsacVfMsH3Lj79dD76WDbKmeE2t4qOf858dJElP1RX/YMnyo2cf7gXBT8Ja1L+nNtvVsrqyD
OdLk/YBXtDli9zvLnWZLvY+4uMJ6H28ry43o20t+tDtp9XYU2RIAcDeyZYdP87gr0tPTk5KS7s9t
lw3PyMjo8gchIznA9WzJz53+65f0SAAAsiVAtgTIlvyQLQEAZEuAbAmAbEm2BAB09mwJgGwJkC3J
lvRIAACyJUC2BMiW/JAtAQBdPVt2vRC7cuXKiRMnutUqJSYm3v0n3/DfE2RLgGxJtgQAwI2ypetr
kpeXN3jw4AceeGDAgAH/9m//dk8C0uXLlwMDA8+fP+9Wa1VWViZrVV1dfTd/g2RLsiVAtiRbAgDQ
+bLloUOHjEbjrl27rl27durUqZkzZ96THZeVlTV37lx3WyuRkpKycePGuz3gA9kSIFuSLQEAZEut
tH79+uDg4ICAgAULFjQ2Nqr6hoaGRYsWqb87LwV56Xh6q6Rh+xzaEydOJCcny6f8/PySkpIqKir+
Zz3+QU3W2tq6atWqiIgIg8Egeam2tlbVT5o0aevWrbZb4mA99dZH8qHJZOrWrZtlvd5yraaPi4v7
5JNPtNm6yVqJ3NzchIQEF1N6//7929ra1EspyMvDhw87XWf5Xb/00kvyG5QJNmzYQLYkWwJkS7Il
AADfyJbx8fHn2kkhPT1d1S9fvlxelrUbM2bMihUrHE/vNFsOGjSooKDg+vXrNTU1CxcunDNnjt0P
ZmZmSn4rKSmpqqqaMWPGkiVLVL3kq7Nnz9puiYP11FufCRMmaDe1avV6y7Wa3mg0Xrx4UZutm6yV
uHDhggR++8MyG0OHDt27d68q5+fnDxs2zJV1XrlypfrVqwnIlmRLgGxJtgQA4BvZ8ujRo6p85MiR
AQMGqHL//v21+qKiIq1eb3qn2dLSlStXTCaT3QnMZvPx48e1vBQeHq7K3t7e2pU0Sw7WU299Tp8+
bVuvt1yr6T09PZuamrSXbrJWN9ovKnp5ebmYLTdt2jR58mRVnjRp0ubNm11ZZ6mxnIBsSbYEyJZk
SwAAvpEt6+vrVVkKPj4+qiwFu/V60zvNloWFhbGxsQaDQd0B2717d7sf9PX17d7Ow8ND3pJ/VX1E
RERZWZntljhYT7310W4HtazXW67V9EajUTKe9tJN1uqG/nVLu6qrq/38/CoqKi5duiQF9RAgp+ts
NQHZkmwJkC3JlgAA2L9uKYUOXbe0nF6CR11dnSqXl5fbZkuZcvv27ZWVlS0tLfKvVq99Y1CJiooq
LS21XeNJkyb9y7/8i2293no6XR+rl3rLtZo+Li4uLy/P3dbqRke+b6lMmzbt9ddf37Bhw/Tp053+
xrXfoOUla7Il2RIgW5ItAQD4RraUTKK+PykF7Vt2y5Yt0759Fxsbm5aW5nj6ESNGZGRk1NbWlpSU
jB8/3jY1hYSE7Nq1q6Ghobi4ODk5Was3Go3Hjh3T1iw7O1uWKzWNjY1yhpsyZYqqP3ToUK9evXbv
3q2eyJqSkuJ4PZ2uj9VLveVaTZ+VlTVr1iztpZuslZC1ysnJcSWFKvn5+Q+307546eA3rgrLly/X
fvUyJdmSbAmQLcmWAADYeU6swWCYP3++9u3B+vr61NRU9dRQKWg3Q+pNX1RUNHz4cB8fn/Dw8C1b
ttimpry8vKioKC8vr7CwMElBlo+r8ff3t3wyqrxrNpu9vb2jo6Mltmkrrf0lycjIyF//+teO19Pp
+li91Fuu1fSVlZWBgYESrtxqrWR9ZK2qqqpcz5ZtbW0R7bR7ax38xlVBftfz5s2T37v89nlOLNkS
IFuSLQEAsM6WHT7N39/S09OTkpLcapVkfTIyMmjWZEuAbMkP2RIAQLYEyJYA7J2ucFfQIwEAyJYA
2RK4L/wNdwUtDQBwk9kSANkSIFuCHgkAQLYEyJYA2RJkSwBAV8+WXTLE3vpGrVy5cuLEiV1v0xIT
E+/+U4U6aRsjWwIAAIBseTvH/S6uiXrSgKenZ+/evSdPnnzw4ME7FC1cmdstLvHy5cuBgYHnz5/v
eptWVlYmm1ZdXX032xLZEgAAACBbdiBbyr9NTU0nT55cu3atv7//l19+eU9W+NbDTFZW1ty5c7vk
pomUlJSNGzfe5dZMtgQAAADucbaUwvr164ODgwMCAhYsWNDY2KjqGxoaFi1a1KudFOSl4+mtxve2
z6E9ceJEcnKyfMrPzy8pKamiouLGNx8uryZrbW1dtWpVRESEwWCQlFJbW2t3/uvWrZswYYLVW3v3
7o2JifHx8QkPD9+2bZvjFXZxfZqbm5cvXx4WFiaR74033tDmuXXrVlmKLGv48OFFRUVOV17ypMlk
6tatm7yMi4v75JNP9KJRp940kZubm5CQ4EorPHToUP/+/dva2tRLKcjLw4cPO2h7qiBb+tJLL8kG
ygQbNmwgWwIAAABukS3j4+PPtZNCenq6qpfUIS/L2o0ZM2bFihWOp3eaLQcNGlRQUHD9+vWampqF
CxfOmTPH7gczMzMlepWUlFRVVc2YMWPJkiV2Jzt16lRQUJDVW6GhoTt37pQocubMmdmzZzteYRfX
Z/Xq1aNHj5bFyfosXrxYmyYxMbG0tFQiVkZGxogRI5yuvMRF7SZYo9F48eJFvWzZqTdNXLhwQeKu
3TZnWzl06FCJzaqcn58/bNgwx21PFVauXKk2XE1AtgQAAADcIlsePXpUlY8cOTJgwABV7t+/v1Zf
VFSk1etN7zRbWrpy5YrJZLI7gdlsPn78uJZSwsPD7U4mwcnT09Pqrb59++bk5Jw9e9ZqTeyusIvr
ExkZqV27s5xneXm5KtfV1fn6+jpd+dOnT2sflzVvamrSC12detNutF9U9PLycjFbbtq0afLkyao8
adKkzZs3O257qiA1lhOQLQEAAAC3yJb19fWqLAUfHx9VloLder3pnWbLwsLC2NhYg8Ggbsvs3r27
3Q9KmOnezsPDQ96Sf+1OdurUKaPRaPXWgQMHEhMTAwMDBw4cuGfPHscr7OL6WO4HvZikvXSw8tqd
nzfar1tKPNObW6fetBv61y3tqq6u9vPzq6iouHTpkhTUQ4ActD27jZNsCQD3eEiBu4LGBqATZEvt
EpAUOnTd0nJ6Ge7X1dWpcnl5uW22lCm3b99eWVnZ0tIi/2r12vf0lKioqNLSUrtrbPly7dq1SUlJ
dt+SqJObmxsSEuJ4hV1cH8lydi/u2X3p4srHxcXl5eV1yU270ZHvWyrTpk17/fXXN2zYMH36dKdt
T9tAywu2ZEsAuLe9GTuB/QyAbPk/JUkC6jt7UtC+27Zs2TLtO2+xsbFpaWmOpx8xYkRGRkZtbW1J
Scn48eNts6Ukol27djU0NBQXFycnJ2v1RqPx2LFj2pplZ2fLcqWmsbFRxtxTpkyxnE9zc/OpU6ck
fQUEBPz1r3+1WsTUqVMlcsgHJd707t3b8Qq7uD5r1qwZPXq0TGP1pUS73b3jlddkZWXNmjXL6uNd
Y9OEbFpOTo7rJ8X8/PyH22lfvHTQ9lRh+fLl2obLlGRLACDzsJ8BwC2ypXrWqMFgmD9/vvZMzvr6
+tTUVPWsTilotyDqTV9UVDR8+HD1INMtW7bYZsu8vLyoqCgvL6+wsDDJHlp9Zmamv7+/5XNi5V2z
2ezt7R0dHb179+7/XeP22ztDQ0MnT558+PBh2952x44dsghZh5iYmIKCAscr7OL6NDU1LV261GQy
ycclEzoOYA5W3nL6ysrKwMBAyUVdb9Nko2TTJKy6flJsa2uLaKfdW+ug7amCbOm8efNktWXbeU4s
AJB52M8A4C7Zsmt3be65wunp6dqNr11p02SjMjIyOMDIlgDIPOCsAYBsSbZk08AoAQA4GXHWAACy
JdkSjBIAgJMRZw0AuMvZEgCjBAAgW3LWAACyJcAoAQDIlpw1AKCrZ0t3WNDKlSsnTpx4i/NJTEy8
+0+p4YTNKAEAyJbgrAGAbOnSKcfFNbnp+Vy+fDkwMPD8+fO3OJ+ysjKZT3V19d3cS5ywGSUAANkS
nDUAkC3dIltmZWXNnTv3tqxPSkrKxo0bOWGDUQIAcKrirAEA1tlSCuvXrw8ODg4ICFiwYEFjY6Oq
b2hoWLRokfr79VKQl46ntzq12D6H9sSJE8nJyfIpPz+/pKSkioqK/1mPf1CTtba2rlq1KiIiwmAw
SJarra21mk9HVywuLu6TTz6xXbGOzkfk5uYmJCS4sn8PHTrUv3//trY29VIK8vLw4cMOFqoKsriX
XnpJFi0TbNiwgRM2owQAIFuCswaATpMt4+Pjz7WTQnp6uqpfvny5vCxrN2bMmBUrVjie3mm2HDRo
UEFBwfXr12tqahYuXDhnzhy7H8zMzJQ0WFJSUlVVNWPGjCVLllhN1tEVMxqNFy9etF2xjs5HXLhw
QTKni6fVoUOH7t27V5Xz8/OHDRvmeKGqsHLlSrV0NQEnbEYJAEC2BGcNAJ0mWx49elSVjxw5MmDA
AFXu37+/Vl9UVKTV603vNFtaunLlislksjuB2Ww+fvy4luXCw8OtJuvoinl6ejY1NdmuWEfnc6P9
oqKXl5eLp9VNmzZNnjxZlSdNmrR582bHC1UFqbGcgBM2owQAIFuCswaATpMt6+vrVVkKPj4+qiwF
u/V60zvNloWFhbGxsQaDQd0B2717d7sf9PX17d7Ow8ND3pJ/rSbr6IoZjUbJqLYr1tH53NC/bmlX
dXW1n59fRUXFpUuXpKAeAuRgoXbXihM2owQAIFuCswaATpMttQtlUujQdUvL6SUU1dXVqXJ5eblt
tpQpt2/fXllZ2dLSIv9q9d26dbNcs6ioqNLSUgenro6uWFxcXF5e3q3P50ZHvm+pTJs27fXXX9+w
YcP06dOdLlTbS5ZXTTlhM0oAALIlOGsA6DTZUvKS+nqhFLRvAC5btkz7ZmBsbGxaWprj6UeMGJGR
kVFbW1tSUjJ+/HjbbBkSErJr166Ghobi4uLk5GSt3mg0Hjt2TFuz7OxsWa7UNDY2Su85ZcoUq/l0
dMWysrJmzZplewrs6HyEzCcnJ8f102p+fv7D7bQvXjpYqCosX75cW7pMyQmbUQIA3J/Z0vI5f3fO
Rx99NGDAAHWrFGcNALgN2VI9FtVgMMyfP197cml9fX1qaqp6oqkUtBs19aYvKioaPny4j49PeHj4
li1bbLNlXl5eVFSUl5dXWFiYJDStPjMz09/f3/I5sfKu2Wz29vaOjo7evXu3VEpk/fa3v31zK1ZZ
WRkYGChR7RbnI3OQ+VRVVbl+Wm1ra4topz0w1sFCVUEWN2/ePFm0rADPiSVbAgDZ8o5GUBmTyMeP
HDnCWQMAbk+2dIdTiAONjY2SNkeOHHnTc0hPT09KSrrF+cgcMjIyaDpglAAA93ZgcBuz5d25OspZ
AwDZ0l1OIZ6enkOGDDlw4ICbzAdglAAAd3pgYJn6LP8atpeXl5zN9+/fb1WvTdzW1vb2229HR0f3
6NEjKipq06ZN2t1D33JITfPLX/5SPUowJCRk7ty5V69e1Vbpww8/fOKJJx566KE+ffrIIhwvi7MG
ALKlO2ZLgGwJAF04W166dGnSpEmWBbvZ8vnnn6+urn7//fel/Mgjj9hOpqgv5jz33HM1NTVpaWlS
fuuttywnnjlzpryl9/FXX331wIED9fX177zzjry1YMECVa++zpOQkHD27NmKiorU1FTHy5INkc2x
LHDWAND1syUAsiUA3Kts+dvf/tZoNE6dOlUVZsyYoZct1aMTmpqarP5EmdUKSOyUmpMnT95o/3tg
Un700UctJ/7666+/MR7SWf+WlhZ5KywsTL3s16+fvLR8+qDjZcmGyObIRsmmqQJnDQBkSwBkSwC4
U9lSPp6SkqIKL7/8st3UZ5UAHbwlvL29rW529fLy0pvYquaLL76Ij48PCgpST461DLGenp6WfwHb
6bLE4sWL1cxlA2993MVZAwDZssOnnJUrV06cOPH+/K0kJiZ29HFBt+X32Cn+o+GerOQdXSijBABk
yxv/uG45bdo0p9ctXcyW6gKjushpZ/TjMFtGRETIy48//ripqenatWuW79q9bulgWdp1S9k0rlsC
IFu6dApxOp8OLejy5cuBgYHnz5/X++xtHOsPbOdW5+OysjLZ/OrqajfJllKvnlWg2bNnz517ZsNN
r6Tl+MDT07N3796TJ08+ePDgnVso2RIAbmNXeenSpR/96EeWBdezZVBQkJSLi4u1d7Ozs6Vm6tSp
FRUVV69elTNXQkKCi9nSZDLJyz/+8Y/ywdTUVMt3Lb9vWVlZuWTJEsfLkg1RX7PUCpw1AJAt72q2
zMrKmjt3roPP3q6x/v79+83t/vznP7vV+TglJWXjxo3uky0fe+yxlpYWrWb06NH36iKnK9nyRvv3
cE6ePLl27Vp/f/8vv/ySbAkA7p8tdUcqLmTLLVu2GI1Gqwk++OCDxx9/3K/d2LFjP/30Uxez5eef
fz548GB1+6vV82PFb37zmyeeeELm2adPn23btjleFmcNAPdjtmxoaJg3b15AQECvXr3Wr1+v1be2
tq5atSoiIsJgMEjgqa2tvfHNh3dbnVFkPosWLerVTgryUptAZhscHCyLWLBgQWNjo6rfu3dvTEyM
j49PeHi41kHHxcV98sknrmRLux+3u87qU5JaTSZTt27dVM2LL764bt06SSA//vGPtZk3NzcvX748
LCxMYskbb7zhoNLBxurFnq1bt8qqygoPHz68qKjI7s4Uubm52n95uviLtJ2zOHHiRHJysuxzOdUl
JSVVVFQ42G96M5H6n/70p++++662btJUtLXVW4Teb9xKYWHh0qVLJd7fYkPSe+Kx/H4nTJjg4nio
owuV1ZaVd5pdGSUAIFuCbAngPsqWaWlpY8eOPd9OUo1Wn5mZKUmvpKSkqqpqxowZ6t4PB/FJAlh8
fHxZuzFjxqxYsUKbQOrPtZNCenq6qg8NDd25c6cM4s+cOTN79mxVaTQaL1686Eq2tPtxB+ssMUO7
1VY+FRgYqFZVClqQWL169ejRo0+dOiUfX7x4sYNKBxurly0TExNLS0sl7mZkZIwYMUJvAy9cuCBJ
xvUzt96cBw0aVFBQcP369ZqamoULF86ZM8fBfnOwerIzv/vd76q/1vX4449/9dVX2proLULvN36j
/Zl7+/bt+8lPftK3b9+oqKhf/OIXf/nLX26xIellS/mVBQUFuTge6uhCZbVl5WUTwsLCJIvKRlle
3WWUAIBsCbIlgPsxW/bv318CgyofPXpUqzebzcePH9cCT3h4uOP4JPORj6tyUVHRgAEDtAm0+iNH
jmj1ki5ycnLOnj1rOTdPT8+mpiZXsqXdjztY59OnT2uTffjhh08//bQqS2DQvl4fGRmpXbLT2K10
sLF62bK8vFyV6+rqfH199TawsbHR8hFzrmRLu3O2dOXKFZPJ5GC/OV698ePHSxz93e9+9/3vf19v
TSwXofcblyhrNBqHDh26atUqbYJbb0h62VJCrzQnF8dDHV2oRipfe+21IUOGyKZpWZ1RAgCyJciW
AO7HbOnj46NduKuvr9fqJWB0b6cew235h6TsnlFkPtqDuaUgL7UJ7NYfOHAgMTExMDBw4MCBe/bs
UZUyQJdMaBk1Le+otMxddj/uYJ3VlTfl2Weffe+991T53XffHTdunO0maJxWWm2sXrZ0pf6G/nVL
F8/o2svCwsLY2FiDwaDuuZV94mC/OV69/Pz8mJgYyYS///3vXVmE3m981qxZ8vsdNmzY6tWrrZ6z
dysNycF1S1mci3uvowvVSPKUqCz7R5YlG8goAQDZEmRLAPdvttS7bhkVFVVaWmr7Se0ri1ZnFFeu
/EjB6sqPRL7c3NyQkBD1Mi4uLi8vT3s3MjLy8OHD2stDhw49/PDDDj6ut86Wpz0Jb1bf0ZeXKtBK
3LK9RGm3Um9jJXvU1dWpcnl5udNsabUzb9zU9y3tvpRV2r59e2VlZUtLi/xrNZnVfnMafR9pp/K5
00U4+I3LlJ999llqamrfvn3NZvOrr74qAfUWG5LeTl67dm1SUpKLe6+jC5XVlpVX98T+5Cc/kY3i
nlgAZEuQLQHc79ly2bJl2vctn3nmGa0+Ozs7Pj7+2LFjjY2N0otNmTJF1RuNRsuLTpbz0b6xFhsb
m5aWpk0gYUl9Y00K2jfZpk6dKoN1mbmEnN69e6vKrKwsy4s/r7322qhRo44cOVJfXy//SnnNmjUO
Pq63zpanvczMzBdeeMFyX8gSZblSkJmPHj26uLjY8quVdiv1NnbEiBEZGRm1tbUlJSXjx493mi2t
dqZamZycHNfP3Hpzlty4a9euhoYGWfPk5GSt3u5+c/2yqiuL0PuNW/nLX/4i8cz2WT4dbUhWa9vc
3Hzq1CkJlgEBAX/9619d3HsdXahVMGaUAIBsif8dYOn/7U3OGgC6eLaU2Pbiiy8aDIbg4GDJctpN
p62trRJyZAzt7e0dHR29e/duLZv5+/urj0uI+va3v63NJzU1VT1pUwranYTakzZlEfPnz9fuv92x
Y0dUVJSPj09MTExBQYGqrKysDAwM1P4GcVNTk6xSZGSkTCb/rlq1SpKDg4/rrbNlzz5o0KDPPvvM
cl/s27dv8ODBanFLly41mUyyqipt6lXqbWxRUdHw4cPVU1i3bNniNFta7kwhGy6bLyH21rNlXl6e
7B/5bYaFhak/yeVgv91cttRbhN5v3MWhSUcbktUpvHv37qGhoZMnT7a84m13Q26l9TJKAABXzlDq
+yk9e/b8zne+88orr9g9wTmOZ64oKytLSUmRzl9OSdKNd+j2n1tfOtkSAOx3djIc79evn4uzaGxs
lEQxcuTI27tm6enpTm9l7KpkwzMyMrrqIMOBlpYWp8/dub2rdIdaL6MEAGRL25R1/vz5jRs3Pvjg
g5GRkZcuXbq96U6CpaRKg8Hw0Ucf1dbWHjlyZNq0aWRLALhn2XLx4sXl5eWnT5+Oi4t7+eWXXZyF
hIEhQ4YcOHCAvYlbzJaFhYXaQ33vDndovYwSANwn2VJRf0Pb8s9K//KXv1QXNkNCQubOnXv16tUb
3/zjz5Yftzvxjfbvkkj9li1bbFegtbVVMu0jjzwisdZsNr/55ptSY7luipeXl5wR9u/fr7d020qn
c7Ytt7W1vf3229HR0T169IiKitq0aZP2lEG9TeasAaBTZsvs7GyTyRQcHCydtfYoGuCuZcuePXva
HRZ0+R3FKAHA/ZMti4uL5aX2VX/x6quvHjhwoL6+/p133pG3FixYYPeDjicODQ2Vl1Z/W0sb3shb
ixYtqq6uTk1NlbKEQMtFPP/88/LW+++/L2UJinpLVzUzZ86sqalxcc62ZfVNmeeee05mkpaWJuW3
3npLb/6cNQB04mwJgGwJAHc0W6q/c2b3bzi3tLTIW2FhYQ6ypd7E6tnvdr8Pbzab5a2ysjIpS/iU
suUD5IR6vkNTU5PV3y2zmy2//vpr1+dsW5bsKuWTJ09KWRKplB999FG9+XPWAEC2BEC2BEC2tJ8t
1XXLPn36qJdffPFFfHx8UFCQ+pPUjtOdg4kdXLf09fWVtyQ63mj/mr2UH3zwQbuLcPwlSdsaF+ds
Wfb29ra691WL2S5+LZOzBgCyJQBGCQDIljfWrVtn+X3LiIgIefnxxx9LQrt27ZrjdOdg4pSUFClv
3brVdgUGDhzoytXFm8iWLs7ZstyvXz/tSqnjHcVZAwDZEgDZEgDZ0k5k+vrrr22fE2symeTdP/7x
j1evXlVfWdTmExQUJOXi4mJtVg4mlmjXq1evgIAASZ4SOw8ePDh9+nT11po1a9S3ImtqatSnsrOz
nWZL26XbZj8X52xZVl/RnDp1akVFhWzFnj17tL+VQrYEQLYEQLYEACfZsnv37n5+ftHR0T/72c8s
/77l559/PnjwYPVtSatHpG7ZssVoNFrWOJhYnDlz5oUXXpCEKRMEBgbGx8er+ubm5tWrVw8cONDX
1zcqKiorK8vu01xv2Dx0x2rpttnPxTlbffCDDz54/PHH/dqNHTv2008/JVsCIFsCIFsCgJNsCc4a
AMiWABglAADZkrMGAJAtAUYJAEC25KwBAGRLgFECAJAtwVkDANkSAKMEAGRLcNYAQLYEwCgBAMiW
nDUAgGwJMEoAALIlZw0AIFsCjBIAgGwJzhoAOkm2BHBvMUoAQLYE2RJAp++gLF/8DcA9RZcEgGwJ
siUAsiUAsiUAsiXIlgDIlmRLgGwJAGRLsiUA3Hq2BAAAcKC6upps6Z7ZsqysjJ0DgGwJAAA6h6Cg
oE2bNjU3N5Mt3Sdbyq8jOzu7Z8+e7BwAZEsAANBpgk18fHxkZOTu3bvJlu6QLQsLCx977DH5pbD/
AZAtAQBAZwo28u/vf//77373u6NHj5ZgQ7a8V9lSdv7ixYtDQkLee+899j8AsiUAAOh82fJG+32Y
v/rVryTYzJgxo7S0lGxzN38FRUVF77zzjslkmjNnjvYNWPY/ALIlAADofNlSuXbtWnp6ur+//y9+
8Quyzd0xcuTIH/7wh2az+U9/+pODXw0AkC0B3M4hoGL1khpqqKHmVmpse5t9+/Z5e3t/C3fFAw88
8MQTT9g+TokmSg01t7GGYSTZEsAN/g8bwN3sWCTh/PrXvw4JCZk6dSp9zl37FXznO9958skn//73
v9PnA4ygyJYAAKDTD7n27t07ZMiQkSNH/td//Rejsbv5Kzh48ODPf/5zg8GwevVq7QIm+x8A2RIA
AHSybFlUVPT9738/MjJy586ddmMn7uivQD0nNj8/PzExUfviJfsfANkSwJ0dAgLA7e1Y5syZExQU
lJ2dbfWVP/qcu5wt1d+33L17t3pgLPsfYARFtgRAzwig0/Dx8fmnf/on7e9e0Ofc82x5o/1pvYsX
L/b09GTnAIygyJYA6BkBdA4nT56kz3G3bKkUFhaycwBGUGRLAPSMAOhzcEvZEgC9GdkSAAAwGgPZ
EgDZEgAAgGxJtgRAB8UuABjnAQB9DtkSAL0Z2RIAPSMA+hyyJQB6M7IlAHpGAPQ5IFsC9GZkSwD0
jABAn0O2BOjNyJYAAACMxsiWAEC2BAAAZEuyJQCQLQEwzgNAnwOyJUBvRrYEQM8IgD7nW51uQStX
rpw4caIqJyYmZmRkkC0BMIIiWwKgZwRAtuzAmly+fDkwMPD8+fPqZVlZmbysrq4mWwL0ZuwEsiUA
ekYAZEtX1yQrK2vu3LmWNSkpKRs3biRbAvRm7ASyJQAAuPejMSmsX78+ODg4ICBgwYIFjY2Nqr6h
oWHRokW92klBXjqe3mp4Zzl/VThx4kRycrJ8ys/PLykpqaKiQr2rUZO1trauWrUqIiLCYDBIeqyt
rVX1cXFxn3zyieUicnNzExISyJYAQLYEAABukS3j4+PPtZNCenq6ql++fLm8LGs3ZsyYFStWOJ7e
abYcNGhQQUHB9evXa2pqFi5cOGfOHLsfzMzMlBhZUlJSVVU1Y8aMJUuWqHqj0Xjx4kXLKS9cuCAR
l2wJAGRLAPbHeQBwl7Pl0aNHVfnIkSMDBgxQ5f79+2v1RUVFWr3e9E6zpaUrV66YTCa7E5jN5uPH
j2vpMTw8XJU9PT2bmposp2xsbPTy8iJbAvRm7ASyJQB6RgBukS3r6+tVWQo+Pj6qLAW79XrTO82W
hYWFsbGxBoNB3QHbvXt3ux/09fXt3s7Dw0Pekn9VvdFolKhpOSXXLQEwgiJbAqBnBOBG2VK7DimF
Dl23tJxeQmZdXZ0ql5eX22ZLmXL79u2VlZUtLS3yr1bfrVs3yxWLiooqLS21XeG4uLi8vDzLGr5v
CYARFNkSAD0jADfKlpLQ1PcnpaB9r3LZsmXa9y1jY2PT0tIcTz9ixIiMjIza2tqSkpLx48fbZsuQ
kJBdu3Y1NDQUFxcnJydr9Uaj8dixY9qKZWdny3KlprGxUfLYlClTVH1WVtasWbMsN0Fe5uTkkC0B
ejN2AtkSAAC4RbZUz301GAzz58/XngdbX1+fmpqqnhMrBe0+WL3pi4qKhg8f7uPjEx4evmXLFtts
mZeXFxUV5eXlFRYWJplQq8/MzPT397d8Tqy8azabvb29o6Ojd+/ereorKysDAwMl0KqXUpCXVVVV
ZEsAIFsCAAC3yJY398G7Lz09PSkpSZWlkJGR0Sn2M9kSANkSwL0Z5wEA2bIr7WeyJcAIimwJgJ4R
ANmSzopsCTCCIlsCoGcEAPocsiVAbwayJUDPCAD0OWRLAPRmZEsAAHD/jsZWrlw5ceJEVU5MTOwU
j94hWwIgWwIAALhRtrx8+XJgYOD58+fVy7KyMnlZXV1NtgQAsiWAzj3OA4C72edkZWXNnTvXsiYl
JWXjxo1kSwCMoMiWAOgZAXTBPmfv3r0xMTE+Pj7h4eHbtm1TlSdOnEhOTg4ICPDz80tKSqqoqDh0
6FD//v3b2trUBFKQl4cPH25tbV21alVERITBYJD0WFtbqyaIi4v75JNPLJeYm5ubkJBAtgTACIps
CYCeEUAX7HNCQ0N37tzZ0NBw5syZ2bNnq8pBgwYVFBRcv369pqZm4cKFc+bMkcqhQ4dKEFUT5Ofn
Dxs2TAqZmZkSI0tKSqqqqmbMmLFkyRI1gdFovHjxouUSL1y4EBwcTLYEwAiKbAmAnhFAF+xz+vbt
m5OTc/bsWb0pr1y5YjKZpLBp06bJkyerykmTJm3evFkKZrP5+PHjWnoMDw9XZU9Pz6amJsv5NDY2
enl5kS0BMIIiWwIAgC44Gjtw4EBiYmJgYODAgQP37NmjKgsLC2NjYw0Gw7fade/eXSqrq6v9/Pwq
KiouXbokBfVgHl9f3+7tPDw8ZEr5V83BaDRK1LRcItctaXUAyJYAAKDLZkulra0tNzc3JCREvRww
YMD27dsrKytbWlrkX23iadOmvf766xs2bJg+fbqqiYqKKi0ttZ1/XFxcXl6eZQ3ft6TVASBbArgH
4zwAuDt9ztSpU48ePdrY2CjZr3fv3qpSQuauXbsaGhqKi4uTk5O1ifPz8x9up33xMjs7Oz4+/tix
YzIHiU9TpkxR9VlZWbNmzbJcorzMyckhWwJgBEW2BEDPCKAL9jk7duyIiory8fGJiYkpKChQlXl5
eVLp5eUVFhYmgVCbuK2tLaKd9sDY1tZWmcBsNnt7e0dHR+/evVvVV1ZWBgYGnjt3Tr2Ugrysqqoi
WwJgBEW2BEDPCIA+pwPS09OTkpJUWQoZGRn3534mWwKMoMiWAOgZAdDngGwJ0JuRLQEAABiNkS0B
gGwJAADIlmRLACBbAmCcB4A+h2xJtgTozciWAOgZAdDngGwJ0JuRLQHQMwIAfQ7ZEqA3A9kSoGcE
APocsiUAejOyJQAAYDRGtiRbAiBbAgAAsiXIlgDIlgAY5wEAfQ7ZEqA3A9kSoGcEAPocsiUAejOy
JQB6RgD0OWRLsiVAb0a2BEDPCIA+B2RLgN6MbAkAAMBojGwJAGRLAABAtiRbAgDZEgDjPAD0OWRL
siVAb0a2BEDPCIA+xw1UVFSQLQEwgiJbAqBnBOBefU7nEh8f/8ADD3yrEyJbAoygyJYA6BkB3Bf+
5vaKiopiY2PDw8MnTpz4t06LlgYwgiJbAgAAsuW9tHnz5scee6y6ujo0NHT79u1kSwAgWwIAALJl
x/z3f/93SEhIYWGhrOp//ud/9uvX7+DBg2RLACBbAtA5vLmjAwDsmTNnzuLFi7WXiYmJq1evZrcA
YARFtgRAzwgArvrTn/5kMpmuXbum1ZSVlQUFBZ08eZKdA4ARFNkSAD0jADjX3NxsNpt3795tVZ+d
nR0fH8/+AcAIimwJgJ4RAJxbvXp1YmKi3cz52GOPvffee+wiAIygyJYAAACOnDx50sfHx8HfjQwK
CqqurmZHAQDZEgAAoCPDIK5OAADZEgBjJgAAAEZQZEsA9IwAAACMoMiWAOgZAYB+EgA9A8iWAD0j
ANBPshMA0DOQLQEAABhBAgDZEgAAgGwJAGRLAIyZAAAAGEGBbAnQMwIAAIARFNkSAD0jANBPAqBn
IFsCoGcEAPpJAPQMZEsAAIDOPYLUBpHfskBNJ6qhGQNkSwAAAOBW/3eAnQCQLQFwxgUAAGAERbYE
QM8IAADACApkS4CeEQAAznQA7YpsCYCeEQDAmQ6gXZEtAQAAADIAQLYEAAAAyJYAyJYAZ1wAAAAw
giJbAqBnBAAAYARFtgRAzwgAAGc60K7IlgDoGQEA4EwH2hXIlgAAACADACBbAgAAgGwJgGwJgDMu
AAAAIyiyJQB6RgAAAEZQIFsC9IwAAHCmA2hXZEsA9IwAAM50AO2KbAkAAACQAQCyJQAAAEC2BMAB
CXDGBW5nqwPcDQcmRygtFoygyJYA6BlBqwNok+wNfkfgt0C2BEDPCFodQJtkb4DfEb8FsiUAekaA
VgfaJHsD/I74LYBsCQDgfIz7vU3+7R/YGxyhtFiAbAkAYOQKMFLnCKXFAmRLAIwhQKsDGKlzhIIW
y5FCtgRAzwjQ6sBInSMUtFiOFJAtAXpGgFYHRursDY5QWiw4UsiWAOgZQasDGKlzhNJiwZFCtgQA
cD4GGKlzhIIWC7IlAACMXMFInSMUtFiAbAkwhgBodWCkzhEKWiw4UsiWAOgZQasDGKlzhNJiwZFC
tgRAzwhandutLYcJI3WOUDc56Jwej/fJAUuL5UghWwKgZwRuf6srKytLSUkJDQ318vLq1atXQkIC
2RKM1N3hCP3ud78rs/rd736n1UhZaqKjo8mWtFiOFLIlAADudT6WYCmp0mAwfPTRR7W1tUeOHJk2
bRp7GIzU3eEIXbduncxq6tSpWs2UKVOk5p//+Z9vOlu6svJkS4BsCQBg5Nphs2bNkrlt2bLF9q3W
1taNGzc+8sgjDz74oNlsfvPNN6XG7ujT8uW3vsnq3ba2trfffjs6OrpHjx5RUVGbNm2SGr0PgpH6
fX6Enjlzplu3bnIAXrt2TV7Kv1KWGql3/Wjy8vIaMmTI/v377R68H3744RNPPPHQQw/16dNH5ub6
AUuLBciWANx6lA/c/VYXGhoqczt79qztW9nZ2fLWokWLqqurU1NTpSzxUlsBGeA6yJYzZ86sqamx
fVdCrJSfe+45eTctLU3Kb731lt4HwUidI3TkyJEyt3fffVfK//7v/y7lUaNGuXg0Pf/883Lwvv/+
+1J+5JFHbI/HnJwcKSckJEgPUFFRIYe56wcsLRaMoMiWAOgZQav7Bk9PT5lbQ0OD7Vtms1neKisr
k7IMPaUsNdoKdO/e3UG2/Prrr+2+KwNcKZ88eVLKMuqV8qOPPqr3QTBS5wjdunWrzG3s2LFS/v73
v2+Z7pweTefOnZNyU1OTlD08PGyPx379+kn52LFjVivvygFLiwUjKLIlAHpG0Oq+wcF1S19fX3lL
BqZSbmxslPKDDz7oYrbUG6p6e3tb3fvq5eWl90EwUucIvXz5shwjnp6eR44ckX+lXFlZ2dGjSe8I
Vf+1VF9ffxMHLC0WjKDIlgDoGUGr+4aUlBSZ29atW23fGjhwoN51Sw8PD3mpvn557tw517Oluk6i
LqfYbhRHEyN1jlBbP/jBD2SGgwcPln9/+MMfavWuH016R6jT65YOFkGLBSMosiUAgPPxN0ho7NWr
V0BAwMcff3zt2rWDBw9Onz5dvbVmzRr1fcuamhr1fcvs7Gz1lrpT7sMPP6yurp45c6br2VJ9h3Pq
1KkVFRVXr17ds2eP9idPyJaM1DlC7dqxY4d22fA3v/mNVu/60aR3hFp+37KysnLJkiWuH7C0WIBs
CQBg5GrtzJkzL7zwgiRMT0/PwMDA+Ph4Vd/c3Lx69eqBAwf6+vpGRUVlZWVpz4ndv3//kCFDvLy8
bJ/s6jhbig8++ODxxx/3azd27NhPP/2UbMlInSPUgbq6up49e8o85d/r169bvuXi0eTgCJWw+sQT
T8jH+/Tps23bNtcPWFosQLYE4O5jCIBWB0bqHKGgxXKkgGwJ0DMCtDowUmdvcITSYsGRQrYEQM8I
Wh3ASJ0jlBYLjhSyJQB6RtDqAEbqHKGgxXKkkC0BAOB8DEbqHKGgxQJkSwAAI1cwUucIBS0WIFsC
YAwBWh3ASJ0jlBYLjhSyJQB6RtDqAEbqHKGgxXKkkC0B0DMCtDowUucIBS2WIwVkS4CeEaDVgZE6
RyhoseBIIVsCADgfA4zUOUJpsQDZEgDAyBVgpM4RClosyJYAGEMAtDowUucIBS2WIwVkS4CeEaDV
gZE6RyhoseBIIVsCoGcErQ5gpM4RSosFRwrZEgA9I2h1ACN1jlDQYjlSyJYAADg5HwPuhpE6Rygt
FiBbAgA638iVnQB3a5OM1DlCabEA2RIAYwjQ6gBG6hyhtFhwpJAtAdAzglYHMFLnCAUtliOFbAmA
nhGg1YGROkcoaLEcKSBbAvSMAK0OjNQZqXOE0mLBkUK2BABwPgYYqXOE0mIBsiUAgJErwEidIxS0
WJAtATCGAGh1YKTOEQpaLEcKyJYAPSNAqwMjdUbqHKG0WHCkkC0B0DOCVgcwUucIpcWCI4VsCYCe
EbQ6gJE6RyhosRwpZEsAADgfg5E6RyhosQDZEgDAyBWM1Bmpc4TSYgGyJQDGEKDVAYzUb+cR6s6H
6n3ejdBiaYRkSwD0jACtDozUO1+2vIfH7Lf+ITAwcPz48SUlJS6u0m1c5/Ly8ueeey4kJMTb23vU
qFEff/yxK4u4ozuNFsu5jGwJgJ4RoNWBbNn5sqU7rExFRcXPf/7zkSNH3v1s+fTTT//0pz+9cOFC
Q0PDvn37nn32WXeI3LRYzmVkSwD0jMAdaXW287ybQ0+OTbJl186WWqG5uXn58uVhYWH+/v5vvPGG
qmxtbV21alVERITBYEhJSamtrdU+tXXr1vDwcB8fn+HDhxcVFan6vXv3xsTESKW8tW3bNqcz0Vbs
ypUrPXr0sKo/ceJEcnJyQECAn59fUlKSRNAbFlc7tcn05u8KWei1a9ds95LVIqSQlZVlMpm6detm
tffs7gdJqvPmzZM179Wr1/r16zt0yNNi6aXJlgAA3ObzsYNBsN5SbuIjHV0lpWfPnrGxsceOHWPU
QrbsMtly9erVo0ePPnXqVFVV1eLFi1VlZmZmXFxcSUmJVM6YMWPJkiXapxITE0tLSyXIZWRkjBgx
QtWHhobu3LlTktWZM2dmz57tdCaqoK5bajPR6gcNGlRQUHD9+vWampqFCxfOmTPH7hGkN39XDron
n3wyNTX15MmTjqeXlxMmTDh//rzt3rO7H9LS0saOHXu+XUJCAtkSZEsAANwiNd2W65a3K1uqwtWr
V2UgPmzYMLIl2bLLZMvIyEjtspvGbDYfP35clS9cuBAeHq59qry8XJXr6up8fX1VuW/fvjk5OWfP
nnVxJkpAQMAPfvADibUODpArV66YTCa7E+jN35WDTqafN29enz59HnrooenTp9umR+3l6dOn7e5G
u/uhf//+X331lSofPXqUbAmyJQBG+cDNtzrbm9kOHTok4622tjY1gRTk5eHDh+3e9nbD2UXI9evX
BwcHy6cWLFjQ2Njo+COWd7hVVVUFBQVpS2lqajIajRcvXuzoMXXt2jUfHx9VbmhoWLRoUa92UpCX
juud3svnYJ/YvQEPjNRvPVtKo6qvr7eaXsJS93YeHh4ypfyrF71U4cCBA4mJiYGBgQMHDtyzZ0+H
ZmI7t8LCwtjYWDk61MErc7D7Qb35d4h0AkuWLHnqqaf0NlDru27o3xBhuTO14132KtmSERTZEgA9
I3Dzrc7uzWxDhw7du3evmiA/P19d93N625vdQnx8/Ll2UkhPT3flI9pKylLWrFmjyp9++um4ceNc
PHYsr1uuW7dOe/TI8uXLZTXK2o0ZM2bFihWO67X56N3L52Cf2L0BD4zUbz1bShq0/d+KqKgoaW9O
zy9WLyWG5ebmhoSEdGgmtvUDBgzYvn17ZWVlS0uL/KvVqy89Ol3JjpLjWvvOp9Ui9LZXr57rloyg
yJYA6BmBO9LqtJvZNm3aNHnyZFU5adKkzZs3603pNCjKcE2Vjxw5IgPQDmXL4uLisLCwpqYmKc+b
N2/Hjh2uD3ktv3J54MABbRyprY+MzrX10avX5u/KvXxW+8TuDXhgpH7r2XLNmjWjR4+Wo8Py+5bZ
2dnx8fHHjh1rbGyUHThlyhTHmWrq1KnS5mViyZa9e/fu0Exs5ybpdNeuXQ0NDbJWycnJWr3RaLT8
trPe/F05qMeNG7dv3776+nr1nc8nn3zS7iI6mi2XLVumfd/ymWeeIVsygiJbAqBnBG6+1dm9ma26
utrPz0/GcJcuXZKCvLzhwm1vdgvazXtS0O5Ndf1ZPj/60Y8++OCDtra2qKio69evd3Tr5COZmZna
7XOWNxNaro9evTYfvXv5XLwVkGOckfptzJZNTU1Lly41mUzS8LKyslRla2trTk6O2Wz29vaOjo7e
vXu346a4Y8cOOaakqcfExBQUFHRoJrZzy8vLk7l5eXmFhYXJHCwv+Pv7+1veW253/q4cLJKBR40a
JR+UMCnx9cyZM3YX0dFsKcf7iy++KHsyODj4tddek02gxTKCIlsCAHCT52O9m9mmTZv2+uuvb9iw
Yfr06Y6ndPG6pRRcuW5pdYfbF1988b3vfW///v0zZ868udFGbW2t5XM7bu66pd69fE73CaMfRuqM
mDuLw4cP9+vXjxYLsiUAADc5ctW7mS0/P//hdtoXL/WmdFxISEhQ37eUgu33GG0LVne4iZEjRz71
1FN/+MMfXB9/W163zM7OjomJUS+XLVumfa8yNjY2LS3Ncb02H717+ZzuE3ICI3WypZtbvHhxeXn5
6dOn4+LiXn75ZVosyJYAGEMAN9nq9G5ma2tri2inPXRRb0pXnhNrMBjmz59v+/xV24LVHW5i9+7d
JpOptbW1Q9lS8fX1HTFixKFDh1R9fX19amqqeh6sFCzvg7Vb7/RePqf7hGOckTrnBTeXnZ0tPYx0
U3Pnzq2rq6PFcqSQLQHQMwJdttVt3br1lVde4VdGtuQIBS0WHClkSwD0jKDV3aSampqHH3743Llz
/MoYqXOEghYLjhSyJQB6RtDqbnIlPTw8bP8CChipc4SCFguOFLIlAIDzMcBI3a2PUKdLpwOhxYJs
CQAAQ0MwUucIpQOhxYJsCYAxBHC7Wx3ND4zU3XNvVFVVBQUFVVRUqJqmpiaj0Xjx4sXW1tZVq1ZF
REQYDIaUlJTa2lo1wYkTJ5KTkwMCAvz8/JKSkrQPyqyysrJMJpPVH491sX/YunVreHi4j4/P8OHD
i4qKblg8h/k+7z1osYygyJYA6BkB+9nyHrZDy3UQnp6evXv3njx58sGDB2/vocSxxki9cx2hCxcu
XLNmjar59NNPx40bd6P97/TExcWVlJRI+JwxY8aSJUvUBIMGDSooKLh+/XpNTY18cM6cOdqsJkyY
cP78edePCMtDMjExsbS0VBJsRkbGiBEjOJRosYygyJYA6BkBJ9nSfVamqanp5MmTa9eu9ff3//LL
LznWGKnft0docXFxWFiYHBFSnjdv3o4dO6RgNpuPHz+uJrtw4UJ4eLjtx69cuWIymbRZnT59ukNH
hOUhWV5ersp1dXW+vr4cSrRYRlBkSwD0jICTbKkVmpubly9fLiNaiXZvvPGGqtS7Dc/uLXNi7969
MTExUilvbdu2zelM7B4L69atmzBhws1tFDfyMVLvGkfoj370ow8++KCtrS0qKur69etSIwGvezsP
Dw/1LGU1ZWFhYWxsrBxcqpHLBNqs5OO32D84rqfFsjcYQZEtAQCcj+0UVq9ePXr06FOnTlVVVS1e
vFhV6t2Gp3fLXGho6M6dOxsaGs6cOTN79mynM7E7SpB1CAoKcn0wwY18jNS73hH6xRdffO9739u/
f//MmTNVjYRMadu2HxkwYMD27dsrKytbWlrk31vJgU6zpetf3aTFAmRLAMD9my0jIyO1y48avdvw
9G6Z69u3b05OztmzZ12cid2B7PXr1z09PW8uW3IjHyP1rnGEipEjRz711FN/+MMf1Mvs7Oz4+Phj
x441NjbKvpoyZYqqDwkJ2bVrV0NDQ3FxcXJysivZ0pVDyW690WiUFeB3RIsF2RKAW48hgHueLX18
fOrr662m17sNT2/oeeDAgcTExMDAwIEDB+7Zs8fFmdhet5Qh7K1slON6MFLvFOeF3bt3m0ym1tZW
9VIKOTk5ZrPZ29s7Ojpa3lX1eXl5UVFRXl5eYWFhMsEdzZaZmZn+/v48J5YWywiKbAngxldffUXP
CM7HegVJg7bXLfVuw9MbeiptbW25ubkhISEuzsTq42vXrk1KSrqN2ZIb+Ripd8YR89atW1955RX2
CS0WjKDIlrhtRw5uo549e+bl5dEzgvOx3cKaNWtGjx5dXFxs+X1Lvdvw9FLc1KlTjx49KhNLtuzd
u7eLM1GF5ubmU6dOSbAMCAj461//6vohw418jNS73hFaU1Pz8MMPnzt3jn1CiwUjKLIlbt+Rcy6P
n9v1I/vTz8/PfeIlPSPcKls2NTUtXbrUZDIZDIasrCxVqXcbnl6K27FjR1RUlI+PT0xMTEFBgYsz
0Z5vGRoaOnny5MOHD3fokOFGPkbqXewIVbeOb968mR1CiwUjKLIlyJbumy137tzpVvES4HwM2iQj
dY5QWixAtgTZsvNlS9mrxEswcgUYqXOEghYLsiXIlvzcarZ0n3jJGAK0OoCR+u09QjnGabEcKSBb
gmx5V7Olm8RLekbQ6gBG6m6eLcvLy5977rmQkBBvb+9Ro0Z9/PHHriyoC3c1tFjOZWRLkC35sc6W
7hAv6RlBqwMYqbt5tnz66ad/+tOfXrhwoaGhYd++fc8+++x93pnQYjmXkS1BtuTHTra85/GSnhH3
sNXR/MBI3c2P0FWrVvn7+4eEhHz00Ufqb/P07dv3888/VxOcOHEiOTlZKuUslpSUVFFRYTWHL7/8
sk+fPtnZ2Tfan9Usc4uIiDAYDCkpKbW1ta6vUo8ePa5du2a7nhqtJisry2QyqT8na1m/devW8PBw
Hx+f4cOHa39EV5LqvHnzZP179eq1fv36TtQj0WLJlmRLkC35+Z9saZeHh8dXX31Fe8P9mS3v4Rna
9mC808MLvT9ScidwJyEj9Vs8Ql966aUrV6786le/knS3cOFCVR42bJiaYNCgQQUFBdevX6+pqZF3
58yZYzkHaW9Go1H7ez+ZmZlxcXElJSVVVVUzZsxYsmSJ623vySefTE1NPXnypNOjacKECefPn7fd
kMTExNLSUgm0GRkZI0aMUPVpaWljx4493y4hIYFsCZAtQbbsOplT+x9f4H7Llu6wMl1yidxJyEj9
Fo/QysrKG+3X9yzL3t7etp+S2GkymbQPbtq0qXfv3n/5y1+0Ccxm8/Hjx1VZ2mR4eLjrR4dMP2/e
vD59+jz00EPTp0+3TY/ay9OnT9vdkPLyclWuq6vz9fVV5f79+2v/q3v06FGyJUC2BNmy62RLOUPc
/XjJEBPukC21QnNz8/Lly8PCwvz9/d944w1VqXcrnd59bnv37o2JiZFKeWvbtm1OZ2I3kv3+979X
5c8++2zcuHFqyvXr1wcHBwcEBCxYsKCxsdF2Kyzvx7N7u6Ddu/hUQYbsixYt6tVOCvLS8Wa6gjsJ
O9dI/Vtuw/bosFsuLCyMjY2VY0p9qnv37toEEtteffVVy62TRNe9nYeHh7pb5yZ20cWLF5csWfLU
U0/pZcu2tjan/42lvZSGrR1o9fX1ZEswgiJbgmzZpbLl3Y+X9Ixwq2y5evXq0aNHnzp1qqqqavHi
xapS71Y6vfvcQkNDd+7cKUPGM2fOzJ492+lMbNfw4MGDjz76aFNTk2Rdial///vf1ZTx8fHn2kkh
PT3ddiss78dzfLug7d6QUC2zLWs3ZsyYFStWON5MVw5k7iTsdNnSPY9QvfKAAQO2b99eWVnZ0tIi
/1p+UJpxZGTkhg0btE9FRUVJW7r11bt69WqPHj1UWf1viIOG7bie65ZgBEW2BNmyi2fLu3yeoGeE
W2VLGYzaXpfTu5VO7z63vn375uTknD171sWZ2L1iI/nzjTfeyMrK+tnPfqZNKaNPVT5y5IiMqm23
wvJ+PEtWtwvqDXO1+ctOsJy/3c105UDmTkKy5R3NliEhIbt27WpoaCguLk5OTrb6oLQ3yZNr165V
ldnZ2fHx8ceOHWtsbJT9PGXKFNf3wLhx4/bt21dfX19RUfHzn//8ySefVPVGo1FmeNPZctmyZdr/
kjzzzDNkSzCCIluCbEm2pGdE18mWPj4+Mny0ml7vVjq98eKBAwcSExMDAwMHDhy4Z8+eDs1Es3v3
7kceeSQsLEwLUTKltm5SkFW13QrL+/Ec3C5od7Utt93u/G/lmOVOQrLlnciWeXl5kh69vLzkSMnJ
ybH9YHl5uRxHr7322o32+9JlGrPZ7O3tHR0drT3jx5U9kJubO2rUKPmghEkJsWfOnFH1mZmZ/v7+
TlusXr203hdffFEO0uDgYFlJ2RBaLBhBkS1Btrx9fx3k/suWgFtlS0mDttct9W6lcxy6JCzJeDQk
JKRDM9FIDNu2bdubb76ZkpKiTaldV5SC3euWlnPQu11Q7y4+B9ctb8tohjsJyZaMmB04fPhwv379
aLEA2RJkS7Il0EWy5Zo1a0aPHl1cXGz5fUu9W+n0ks/UqVMl8MjEki179+7doZkon332mWRRyYTN
zc2DBw9WR6VMmZCQoL5vKQXL70PanZXe7YJ6d/EtW7ZM+75lbGxsWlqa69mSOwnv7Uj9pv+ADdny
npN+pry8/PTp03FxcS+//DLZEiBbgmxJtmQMgS6SLZuampYuXWoymQwGQ1ZWlqrUu5VOL/ns2LFD
kqGPj09MTExBQYHTmdh+3/Kpp576j//4Dy1nSny6YfGcWFm3+fPnWz7H1e766N0uqHcXnyTA1NRU
9ZxYKWj3x95KtuROwrs5UidbdkbZ2dnS4UhLnjt3bl1dHdkSHClkS9ylbGkVvbSXe3+zJua7A3y8
Hwg3Bf//7L0LVFXXuTZcUQIGq1wEUTcXuQTaRiOxNXRwFRCjtgohRuOvrUShqFARc2KHQhQFrUY4
hERpqj2nfvGEpMfvg1QwydAQ8nfY5vweR+WAolVuGs/GEATlukHkf8v8zhyre6+51trcL88zGIy5
3j33vK35vvN99nrXnCff+iUT9twpOvhPG91dZtnNmBa7dmnr3/43/1b2vjjd7Jl/j8j6R3IlW46o
0r87eXtinWba2tt+d/umnxhqPjar3u7aP6Ylv+o619F2us2xtM1Ghd/8f38bsyKASp7+3aejX/xx
w3/lK7RQVghuCQDjb9ZBWWQxtiIJwS0x1ceNFQW3hKaAWwLjk1vOdrI/+9s9ndWFdf/x+82vRjJh
1ptbwgMXVv/5Xx5c+2jDS0tS4qP5t1Yv87935X1TciVbjgK3jAha+PV//i/6o8T+lP/HrHoz3vhZ
6I/n3750irIlb1ltVPiC780r+cPh9tsFzZV/SIz96ZZXlym0UFYIbgkA4JbjG2M0khDcElMd3BKA
poBbAqOaW7rMccw9mHDn//u99FNfL92NL99j6fq//pubzol/q/arf5UlV7LlKHDLayV5LF1RcsLT
bbZZ9Xq5zyn//ISWmNiHlf+umz1ToYWyQnBLAAC3HN8Yo5GE4JYj0gzVAqFc4JZYFMAtAXDL/3t5
5ZPcqBd/7GD3Xe95c86/n86EU62fmjzZom+3/0l92/1P4t96crdIllzJlqPALTuqCliaEtZWT5lV
L+XnXzct/PL5nLCA5+xmTPufkwMsFFooK8RePgCA9RgAtwS3HApuqdfrN27c6OzsbGVlFRQUdO7c
OS2FjDOzA58BALcExjy3JD7Wduv/sLT+r2eMWB8xt6LT+50d7dilj6eu5i//0o/9cozKEVUqfW5J
Cf7cUmO9xAMVnltSaadzUhorPnxcd47+K/dUQQhuCQDglgC4Jbjl4HLLpUuX7tq1q76+vrOzs7S0
dMWKFRPQsMBnAMAtgTHPLQN+9P30XRta//a/q//8L6siX+DydauDid0Zaj4mcjVnlj0T5qTHRwQt
vP7Fb0j+XxePr10VrMotZcsRVfr3wwBCnmfvW1LizZ2vmlVv5u6/v29Z9effyb5vSRSx4FRqZ3Uh
ZYhZEaDcU1khYmIBYKzMuhFpDPRugnBLqUSUHs3ckhIHDx60tbV1dnb++OOPDx06ZG9v7+Li8uWX
X7IMxO527NjBNjemBN882WAwbNu2jTKT/OjRo7zAnp4eKtDd3d3Ozi42Nra1tbUfHbexsWlpaTFt
s9FJMH/fwy87W6fTsdNcpfK8vDw3Nzdra2t/f39+oC41PiEhgbX5yJEjo1xJwS2xloFbAmOeW5Z/
fsL/eV+2IeqJQ9u4PP/4bh9PHcn9nvUs+cNhvl9r7sEEXy+d1VOW833dC3+XpsotZcsRVcr3ibWb
MW3rz1YSDzSr3q7aj/ckrdXNnklfz94XZ5Sn+H/tp5ZYTpniOvfv71Iq91RWCG4JABo917HlHHDn
ddq0aWFhYdIjIqF3E5lbmh5jM264JVHEhw8fnjp1ihhdYmIiSy9atIhlSEtL44eyLlmyhB/6um/f
PpJ//fXXTC49gCc8PLy6uvrBgwcbNmxISUlR6LhoNIKDg5OSkm7duqWc/+97+K1efe/ePdNORUVF
1dTUELNNT08PCAhg8tTUVH5qa2RkJLglAEsObgkMLbfEWZQ43xIAxt+sM5dbssSjR48yMjK4hw29
m+DccpyphpSGNTY29vY905OmraysWAYPD49r166xdHl5uaenJ0tTQirnBfr6+t64cYOl6+vr3dzc
+sEt6YsJCQlz586dMWPG+vXrTdkjv6ytrZXtlF6vZ+m2trapU6fyvlRWVrI0NR7cEoAlB7cEwC3B
LWEZgbG0HqtGqV28eNHPz4+E9NHJkydFHiRPSEPgRNF3omg9c/WlpaWFGsbSoshAkVw1RPDmzZsx
MTHUyOnTp0dHRzc0NCgPFDDonnp3d3dOTg7dmnfffZfSE5ZbyraNp2kednR0sDQluEYYyXl+InKT
+2BhYdG3357FQDp+//79lJSUkJAQkWV48uSJcqeM+sI1VNpmcEsAHhS4JQBuCW4JAGOMW8pGqc2e
Pfvs2bPk8NXV1W3evFmVW0pD4ETRd6JoPS0eg/S55eHDhwMDA9mlKDJQJFcNEVywYEFJSUl7e3tz
c3NiYuKWLVuUBwoYXE/98uXLP/zhD+neffrpp/Tfy8ursLAQ3NI0reW5ZUVFBc/v4+NDs3cQO06a
aGNjw9LsRyVRmarcEs8tAQDcEpi43HL8/WGdACY4t5SNUnNxccnNzb1z545Gl1EaAieKvhNF62nk
ltJXLq9cuaLsYYvkqiGCUjx8+FCn0ykPFDBYnjqxyuTkZGdn5zNnzvBPiWE+++yzoaGh9Cm4pTS9
d+9e/utJWFhYamoq/1UlMjLy6z5QBp4/JyeHLq9fv24wGGi0165dq9Bx0WisXLmytLS0o6OjoaFh
9+7dwcHBTO7o6Ch9Bdpcbkl94e9bLlu2DNwSAMAtAXBLcMux6soA4JayGYi8RUVFOTg4eHt7nz9/
XtVllIbAiaLvRNF6ZrW8vb09KyuLB+NpjAzkctUQQeIw5Knb2dn9zym7k5X7Dgx8ThL5/93vfkc0
fsuWLU1NTUYZuru7T506RZxzw4YNsk/eJia3pFmdlJTEor4pwWc723OVJrCTk5PRPrG5ubm+vr5W
Vlbz58/nT4PN4pZFRUVBQUFUApHJmJiYuro6JieVtLW1VbUqIjk1Pj4+nrX5wIEDlpaW4JYAPChw
SwDcEtwSlhEYP9ySgRgjeZPk1nPC1tbWxtJ6vV5UiCj6ThStZ66+tLa2SncB6d9zS4VGnj59urGx
8fHjx/Rf40AB/UZgYOBPf/pT4jx/+tOfFLK1tLTs37+fCMyvfvUrU/45/rjlhEVZWdm8efPALQFo
CrglAG4JbgnLCIwfbrlu3TriZgaDgbjlnDlzmDAgICA9PZ2oXXV19apVq0SFiKLvRNF6WvRC+tyS
yvfz82OXoshAkVw1RJCIdEFBQWdnZ1VVVUxMDLjlkKKysvKpp55avHixxj17bty48fTTT0+aNOk7
QwB4zCOI5ORkvV5fW1sbHh6+c+fOicktvwMAQwNwSwDcEtwSAEaYW+bn5/v4+FhbWxOLKykpYcLy
8nJ/f3+2eeyJEydEhYii70TRehq5JcPUqVOJ4l69epXJRZGBIrlqiGBxcTF13NLS0tXVlTKAWw7D
nPzBD34QHBz8t7/9TSEbkc/f//73xPzXrVtner7i+NPQiYacnBydTkeWIS4ujgdHTEBuCYMADLVV
wSQDtwT3w14+AADfBRjPc/Kvf/3r7t277ezsMjIyZB9gXrx4ceHChYGBgX/5y1+goQC4JQCAWwLg
luCWAADPFQCEnvqFCxeioqKMXrwsLy9/8cUXvby8zp49Cw0FwC0BANwSALcEt8QqAsBzBQBNnnph
YSHbMLayspL+z5w5MycnR+PbmNBQANwSAJRnLCYZuCW4H7glAGDWARPIU29paUlOTp42bdrrr78+
FFvCjgkNHRFV1ev1GzdudHZ2trKyCgoKOnfunJbGTDSrAm4JgFsC4Jb4A7cEAMw6YCx56sQwJ7KG
joiqLl26dNeuXfX19Z2dnaWlpStWrIDdALcEwC0BcEv8gVsCAGYdMNE99bGrodLDAx48eDBz5syG
hgaWoaury9HR8f79+/TRkSNHnJyc7O3tt2/fbjAYWIaenp6DBw+6u7vb2dnFxsa2trZqr93GxsaU
0pueZECJ7OxsnU43adIkIz6cl5fn5uZmbW3t7+9fXl7O5GyDaGrnrFmzqM1j3QqBWwLglgC4Jf6w
lw8A9PaO9FORwerCAI8lNPcrw3n6iGrh48/7hAVW1dDExMTMzEyW/uyzz1auXMkyRERE8NNi9+/f
zzJkZWWFh4dXV1cTKd2wYUNKSor2WRQcHJyUlGR6xIupCqxevfrevXumbY6KiqqpqSFCm56eHhAQ
wOSpqanLly+/14fIyEhwS3BLANwSALcEtwSAceW5ogtjdNDALScgt6yqqnJ1de3q6qJ0QkJCfn4+
y3Dt2jWWoaKiwtPTk6V9fX1v3LjB0vX19W5ubtpnEeWn8ufOnTtjxoz169ebskd+WVtbK9tmvV7P
0m1tbVOnTmVpDw+PyspKlqY2g1uCWwLglsCIzQZgeICYWGDCeq6iMLaLFy/6+fmRkD46efKkyMXk
CWmM3M2bN2NiYuzt7adPnx4dHc3D+UR1dXd3p6Wlkfdsa2t77NgxJhSF9skqztKlSz/99FOW/uKL
L/iDHdmgQbOaLRsQyBKdnZ07duyY1QdK0KVyN829QaaFDORpLbjl2OWWhJdffvmDDz548uSJj49P
e3s7y9DR0cE+pQTNE5YmRje5DxYWFpSH/vejGffv309JSQkJCREpPrVEtc38ktrGtYOaCm4JrwAA
twRGHv8FDAvALYEJyC1lw9hmz5599uxZ8gjr6uo2b96syi2lMXILFiwoKSkhD7i5uTkxMXHLli3K
dWVkZISGht6+ffvBgwfJyclMKArtk1Wcv/71r9///ve7urqIphIl/tvf/tYrDhrsR7Nle018mIq9
24clS5a8+eabyt3Uov6q9wXPLSeIhrLfOzi++uqrF1544dKlS5s2beI5+XNLSvDnlkQ+adoMvCWP
Hj2ysbGRbYyCHZCV47klvAIA3BIAtwS3BLcEJgq3lA1jc3Fxyc3NvXPnjkafUhojJ8XDhw91Op1y
XV5eXqYP90ShfaL3LYl/Hjt2LDs7+5/+6Z9MnW9p0GA/mi3ymHn51H5p+bLdNJdbyhYCbjlBNNTR
0fH69evSjwIDA0NCQj7//HOeMzIykv10Qgn+00ZOTk5ERAR912Aw0JCuXbtW+/RbuXJlaWlpR0dH
Q0PD7t27g4ODZRtjLrfcu3cvf99y2bJl4JbwCgBwSwDcEtwS3BIYt9xSNsOVK1eioqIcHBy8vb3P
nz+v6lNKY+QuX74cFhZmZ2fHuN/kyZOVv25tbc2j+zhEoX0ixSksLPze977n6urKn5CIggaHotmy
5fdD01XvC7jlBNHQrKwsW1tb6e2mGa7T6Xp6enhOFvJNM3br1q086JQy5Obm+vr6WllZzZ8/n76l
ffUpKioKCgqiLxKZjImJqaurk22MudyStCM+Pp7aSa09cOCApaUlZiy8AgDcEgAAAJhA3JKBqBe5
m87OzpxNtbW1sbRerxcV4unpefr06cbGxsePH9N/1bqIvpo+txSF9oncr5CQkJMnT7799tuxsbE8
p2zQoLnNFgUEKjy3HDpuadQYcMvxqqGmyMvLe+ONN8Y6DykrK5s3bx5m7FjkluPsTW9wSwAAAAAY
Pm65bt06Ik4Gg4G45Zw5c5gwICAgPT29tbW1urp61apVokKIixYUFHR2dlZVVcXExKjWlZmZGRoa
Spml71uKQvtknZsvvviCuChxwu7u7ueee+7/rqCCoEFzmy0KCNy7dy9/3zIsLCw1NVU7t9QSEysr
Nw2VBLecCNyyubn5mWeeoZk8Rrkl6bVer6+trQ0PD9+5cydm7KjilhpJI7gluCUAAGPShwCA0cAt
8/Pzia1ZW1v7+fmVlJQwYXl5ub+/P9s89sSJE6JCiouL6buWlpaurq65ubmqdXV1de3Zs0en09nZ
2WVnZzOhKLRP9n3LkJCQf//3f+c8c9myZb3ioEFzmy0KCOzo6EhKSmL7xFKCx8cOKbc0DZUEtxz3
6wKLCT9+/PjYXUFycnJIwUkZ4+LieOwDZiy4JQBuCQAAuCWAWYfOAuCWmLSYseOQW/b09Lzzzjvf
+973nn76aV9f37ffflv6ii+Hvb39L3/5S3bmKgBuCQAAfAgAsw6dBcAtMWkBcMt/4JY5OTmU3rFj
R1NTU1JSEqWJXkqzJSYm8o8yMzMxH8AtAQCADwFg1qGzALglJi0AbmnMLX19fSl99+5dSt+5c4fS
JJFmYwdTsY+8vb0xH8AtAQAAAHiuAABuCQ0FwC2NueXUqVMpzYJdDQYDpZ9++mlpNulHsof3AuCW
AAAAADxXAAC3hIYCE51bent747kluCUAAPAhAACzDoCnDg0FwC0HxC0zMzPZ+5bNzc3spcqcnBxp
tsTERP7RwYMHMR/ALQEAgA8BYNaN7elXXFz83HPPPfXUU56env/6r/86EayBaQapOzimzwYAt8S6
gBk7gne/s7NTGt3a3d2dkZHh7e1NEh8fn+zsbNl9Yu3s7IhkGgwGzAdwSwAA4EMAmHVjGFevXnV0
dCwoKGhpabl9+/amTZsm5o3TcoomuCU0FAC3VACRw3/+53+mepcvX447C24JAAB8CADo56yTJvLy
8tzc3Kytrf39/cvLy5n84sWLfn5+JKSPTp48qcxnKJGdna3T6SZNmkSXN2/ejImJsbe3nz59enR0
dENDg3Jd3d3daWlprq6utra2x44dY8Kenp6DBw+6u7vb2dnFxsa2trYy+Zo1a6gQ0651dnbu2LFj
Vh8oQZfEQj08PJ48ecIyUIIuy8rKRCVr7AWVnJCQQHKq6MiRI9Jz4WSLNfe+mA6R9HEBuCXWBQDc
crAwefLkOXPm/PznP6+vr8edBbcEAAAAgEHgllFRUTU1NcSF0tPTAwICmHz27Nlnz54lHlVXV7d5
82ZVbrl69ep79+6xywULFpSUlLS3tzc3NycmJm7ZskW5royMjNDQ0Nu3bz948CA5OZkJs7KywsPD
q6urSbhhw4aUlBQmJ/LGNpMwArHTiIiIu31YsmTJm2++ScLnn3+eSDLLcOHChUWLFimUrLEXqamp
y5cvv9eHyMhIPgiiYrX4jqq3A88twS0BcEsAALcEAAAARju31Ov1LN3W1sbfunFxccnNzTVicQrc
sra2VrbGhw8f6nQ65bq8vLz4M0wOX1/fGzdusHR9fb2bmxtLW1lZEeM1rcjDw+PatWssTaV5enpS
4t13333llVeYcM2aNcePH1coWWMvqKLKykqWphql58LJFmsut5QdInBLcEsA3BIAwC0BAMAqAox2
bimb4cqVK1FRUQ4ODt7e3ufPn1flljz0lHD58uWwsDA7OzsWxjl58mTlr1tbW3d0dBg1lWjV5D5Y
WFhQTvrP5O7u7mx/fCNIC6EEXVKiqalp+vTpDQ0N33zzDSXoUqFkjb2gkjm5pYqk58LJFtu/+6Is
B7fEugCAWwIAuCUAAFhFgLHBLRmIaxUVFTk7O3Na1dbWxtJ6vV5UiKen5+nTpxsbGx8/fkz/Vesi
+mr63NLHx6empsa0C2vWrHnvvfdM5bLPLQmvvvrqW2+9dfTo0fXr1yuXrLEXoueWomIHhVuyV0DB
LbEuAOCWAABuCUysGQwAQwEo1zBzy3Xr1hFxMhgMxC3nzJnDhAEBAenp6a2trdXV1atWrRIVQly0
oKCgs7OzqqoqJiZGta7MzMzQ0FDKLH3fMicnJyIi4vr169QGWhHXrl3L5FevXp01a1ZhYSHbJzY2
NpbJ9+7dy9+3DAsLS01NZfILFy480wf+4qWoZI29oIr4+5bLli3jclGxWnxH1SFydHSkksEtsYYC
owHglgC4JQDgN1cA8wowg1vm5+f7+PhYW1v7+fmVlJQwYXl5ub+/P9s89sSJE6JCiouL6buWlpau
rq65ubmqdXV1de3Zs0en09nZ2WVnZzNhT08PfdfX19fKymr+/PlEJqXls/Mtvby8fv/73zNhR0dH
UlIS2yeWEjw+9smTJ+594PGuopI19oJKjo+Pp6Y6OTkdOHCAMqg2eODcMisry9bWFvvEwtYB43jG
4u4D4JYAAMsIYF5hJCcuysrK5s2bNxpuJbglNBQAtwQAcEsA6yIAYF5hJMcYkpOT9Xp9bW1teHj4
zp07R+pWSp92gltCQwFwSwAAtwSwLgIAvE9o6BhDTk6OTqdzcnKKi4vjmxsB0G5oKGYs7j4AbgkA
sIwAvE9oKABAu6GhALglAG4JAFgXAazlADQUgHZDQwFwSwAAtwSwLgIAvM8JqKEFBQU6na5/TRqR
jsC+QbsxxwBwSwDcEgCwLgJYy4F/0ND+qep77733yiuvmMrXrFlDH5nbBg8Pj0uXLvWvPWbl56fS
TZs2LSwszOigSNg3aDfWUADcEgC3BACsiwDWcmBYuWVHR8fs2bNramqkQrokIT9PUjssLCz4mZND
amp45kePHmVkZCxatAj2DdqNNRQAtwTALQEA6yIAywgMVEO/IwGTX7x40c/Pz9ra2s3N7eTJk0x4
8+bNmJgYe3v76dOnR0dHNzQ0kDA9PT05OVla5o4dO0hIiZ6enoMHD7q7u9vZ2cXGxra2tvJKs7Oz
dTrdpEmTRG3gLREVYjAYtm3bRo2ZNWvW0aNH+8ctCS0tLdRNlu7s7KTGz+oDJehSWa7aSNkRY1/M
y8ujsaWq/f39y8vLMRWh3VhDMWNNSwaAoQC4JYB1EQDgfQ6thhqp6uzZs8+ePUskqq6ubvPmzUy4
YMGCkpKS9vb25ubmxMTELVu2kJD4EjEukrA8TU1NTk5OjERlZWWFh4dXV1c/ePBgw4YNKSkpvK7V
q1ffu3dPoQ08LSpk3759ERERX3/99d27d5csWSJrakT2R/rc8vDhw4GBgewyLS2NyrzbByrzzTff
VJarNlJ2xNgXo6KiampqiIUSDw8ICMBUhHZjDcWMxd0Hhn/GYpIBWBcBAN7nkHNLFxeX3NzcO3fu
iL748OFDnU7H0lu3bj169ChLHzlyhC5Z2tfX98aNGyxdX1/v5ubG66qtrVVuA0+LCvH09Lx27RpL
l5eXm8stpa9cXrlyhck9PDykZVIVynLVRopGjL6o1+tZuq2tberUqZiK0G6soZixuPsAuCUAwDIC
8D7HIbckuhUVFeXg4ODt7X3+/HkmvHz5clhYmJ2dHWNlkydPZvJbt24Rm+ru7u7q6nJ1daVLJifK
NLkPFhYWlJ/+87qk71Uqc0tRIdbW1vyVTkr0Lya2vb09KysrJCREtkweKyuSqzZSNGJGrYWdhHZj
DcWMxd0HwC0BAJYRgPc5TjSUvfpoBGKARUVFzs7O7NLT0/P06dONjY2PHz+m/1Ltjo6OPnPmzPvv
v08JLvTx8THa5keZWclyS1Eh0ueWFRUV/X7fsrW1lT827PdzS4VGyo4YuCW0ezSvofv27XvppZdY
Oioqir0+Df8B3BIAtwSA0bguSvcLEUkGjra2tmnTprGAt/b29lEyFFgn4H2OWg11dHSUHsWxbt06
YlMGg4G45Zw5c5iQSGZBQUFnZ2dVVVVMTIx0Pl+6dMnPz2/hwoX8EBFCTk5OREQEFUvl0J1au3Zt
P7ilqJC0tLTIyMiv+0AZ+ve+JRkHKp9azi737t3L36sMCwtLTU1Vlqs2UjRi4JbQbnM1VHWSyK62
/ajx22+/dXBw4K9D05yny6amJnMXu4lzxg+4JQBuCQDjn1vm5+fz5e3DDz8Et4T3CShraFZWlq2t
Lb8kDfLx8bG2tibeVVJSwoTFxcUktLS0dHV1zc3NNZrPP+6DVNLT00PZfH19rays5s+fX1hY2A9u
KSqECFtCQoKdnZ2Tk5Non1jV9y2nTp0aEBBw9epVJu/o6EhKSmL7wVJCGgcrK1dtpGjEwC2h3YPO
LgaLW2ZnZ8fFxUklsbGx77zzTj/aPEHO+AG3BMAtAWD0csu//OUvQUFBM2bMIJ8vMjLy008/ZfIn
T5789re/JafNxsaGfLV3332Xv69ltLEyE/7kJz+hNLnF9P+nP/2ptLqPPvpo8eLFVMXcuXOpTJGQ
nEVaTb/3ve89/fTT5DK+/fbbJJHtgvRS2hJyKPljHNlGAvA+x5DnCgDQ7hHUUGlC9gAbBW4pe6SQ
6OCc8PDwTz75RFpOUVERLcf9syoT4YwfcEsA3BIARi+39PDwoHRhYWF7e/uXX365cuVKJj9x4gTJ
N27c2NzcnJqaSunf/OY30q9v2rSJn4Lw7bffWvbh+vXrkydPpkRjYyP7iD06oGXyzp07tA4lJSWJ
hDk5OSSkda6pqYkklCZ6yWuUvpxmyi1/9rOf0bf+7d/+jdLETkUdB+B9glsCALTbXG4pe4CNAreU
PVJIdHCOo6Pj/fv3peXU19c7OTlptx4T7YwfcEsA3BIARi+3tLOzIzZYUFAgPaKAQAyN8rD9J4m2
Ufr73/++9Ov//d//zTPn5eXxx5UvvviilIjOmzePLo1e/5AV+vr6kpCWOkoT56Q0SXiNfL9HWW75
9ddfU7qrq8tob0ysE/A+wS0BANo9QG4pe4CNAreUPVJIdHDOlClTaPGS5jQYDJaWlmZxywl1xg+4
JQBuCQCjjlvyx4BEAm1sbFgeWmD++Mc/MrmVlZVRWClf6kwLDAwMJEl+fj6l2cPDoKAgvmrSJX9d
SkFIqxEJ2RJLKyuln376aY3cUstHwLj3Pr8zRoDpBEC7xxa3lM1ACxktVbKEUPZIIdHBOY6OjsTf
pFWInluqtnmCnPEDbgmAWwLASHJLNzc3EvKQG1q06NLd3Z1n6OzspAUjIyOD5C4uLkzIHi2y54HK
ZLWuro6YqpH3TBKS95rz3JLWYNFzS7a8sdcvqUnglvA+x65bgDkJQLvHB7f08vIqKyvj8qtXrz7z
zDPSnEZHCokOzgkPDy8uLpZKBvK+5UQ44wfcEgC3BICR9Fz37NlDwoSEhMY+/OIXv6BLvqd/dHT0
f/zHfxgMBvpPciJ4TM7efly3bl1DQ8OjR4/Onz/Plzojznb48GGWk0soTZJf//rXvf/4aiXVzl7b
kBVmZmay9y2bm5vZ+5bUBlYgC9D96KOPmpqaNm3apJFbzpw5k9JVVVWYFeCWaORY777qm2YAuOUw
c8sDBw4EBQVVVFR0dHTQf0rTKsYXQdMjhUQH52RnZ7/22mvSKuiSVsl+aMEEOeMH3BIAtwSAkXTd
uru79+/f7+Pj81QfKEEr4uPHj9mnxcXFoaGhU6dOnTFjBiX+8z//k3/xgw8++NGPfjS9D8uXL//s
s89k6dyzzz5LlzyYlkBpksyfP59dfvjhh4sXL6ZC5s6dy3fMMxVSOzMyMojcUmOokbTc8n1iL126
tHDhQktLS9PAQgVueeLECUdHRzy9BLccr41UeN1LuZYRHChwS2j3uOGWXV1dtJh6eXlZW1vT/4MH
D9Iqxj6SPVJIdHBOY2Ojg4MDjxKiBF0+ePDALC2YUGf8gFsC4JYAAPcagPeJyT983HLUDhS4JbQb
a6gp9u/fHx0dzdKUSE9Px2wfVdxyQo08BgHcEgCg/AC8z7HHLSlx5MgRJycne3v77du3801BTE+Q
e/DgwcyZM/lRcl1dXezQAi3PLU3P2TN9+K9w2F12drZOp5s0aZJsA7T0l/q1bds26g4VfvToUS2V
mjVcqifyAeCWWEMxY0eEVg3W49zBfSzs3Ycxxy31ev3GjRudnZ2trKyCgoLOnTunpVWjRJ3BLQGs
iwAAbjkc3DIiIuLrPlBi//79TC57ghwl+Ktcn332GTuHVgu3lD1nz+iLCofdrV69+t69e6IGaBn8
ffv2sW6ywnk21RP2NA6X6ol8ALgl1lDM2NHALUfDnLx06ZJvH/785z+PLW65dOnSXbt21dfX03JW
Wlq6YsWKsbXug1sCWBcBANxyyLkl36qxoqKCb9UoBT9BrqqqytXVlZ3Qk5CQwM77UTjgRPmcPaOB
Utg0kh97K9sALYNPpUkL59lUd6rUOFxmncgHgFtiDcWM1XL3RQEXovgILREi0kReXh7lpPz+/v5k
AJncNGhFuRyF6A/Z8gnx8fGHDx8+dOjQL37xCy4UdVYkl4a0mDUmIqEW2NjYtLS0mN4v08GRtk11
zGnQaEVjfTxy5MgQqT+4JYB1EQDALYeDW8oeMSc6Qe7ll1/+4IMPnjx54uPj097e3qvtuaXsOXtG
X1Q47I6q49lMG6AFRoXzqlVP2NM4XKon8gHgllhDMWPNvfuigAtRfISWCBGpNSOzXFNTQzQsPT09
ICCAyWWDVhTKUYj+kC2fmkdrActPCc5FRZ0VyaUhLeaOiaxQiwIGBwcnJSXdunVLOb9R21THPDU1
dfny5ff6EBkZCW4JAFgXAXifY5hb8gdxlOAP4kQnyH311VcvvPDCpUuXNm3aJOqvaNtGo3P22A+6
HBofIZo2QAukzy0rKipUn1sSaWxra2NpvV6vOlyqJ/IB4JZYQzFjzb37ooALUXyElggRqTUj48bS
ZO74eaRS8KAVhXIUTLds+R999NHSpUtZmkjjH/7wB+XOiuTSkBZzx0RWqEUBqeSEhIS5c+fOmDFj
/fr1puxRtm2qY05jWFlZyVcWcEsAwLoIwPscw9wyMjKSvUBICf6Ts+gEOUJgYGBISMjnn3+unVvK
nrPn6Oh4/fp1/i3Vw+5EDdAy+GlpabybVAvPJqo0ICAgPT29tbW1urp61apVqsOleiIfAG6JNRQz
1ty7Lwq4EMVHaIkQUT2yRRS0IspvbvTHihUrzpw5w9Lvv/8+f21eY3SJtP3SkBazxkRWaBbu37+f
kpJCK5Gos9K2qY459ZE/v5X2EdwSALAuAvA+x+o+seRJbN26lS9vohPkCIWFhTqdjp/7qoVbyp6z
l5WVZWtry/OoHnYnaoCWwWdvs1AfqafSN3ZElZaXl/v7+7O3cU6cOKE6XKon8gHgllhDMWPNvfui
gAvl+AjlCBFVniMKWhGVY9Zb6/X19VOmTJG+oEiXJFTorEhuVL5ZY6Ig1I5Hjx7Z2NgoD47GMcdz
SwDAugjA+xw/3NLc7+bl5b3xxhsj2PgRbwAAbgkzAgwDtxQFXIjiI7REiKjyHFHQiqgcjSEn7DIr
K+vnP/+5VP7aa69lZ2crdFYkNyrfrDGRFWpRwJUrV5aWlnZ0dDQ0NOzevTs4OFh5cDSOOY0hf99y
2bJl4JYAgHURgPc5Ubhlc3PzM888Q2v8SLV8xBsAgFvCjADDwy1FARei+AgtESKqPEcUtCIqR2PI
CbtcsGDBF198IZUTVXvuuecUOiuSG5Vv1pjICrUoIHHRoKAgqoLIJBHvuro65cHROOY0aPHx8ayP
Bw4coMEHtwQArIsAvM/xzy3ZSyzHjx8fwWaPbAMAcEuYEWDYuCUwAVFWVjZv3jxwSwCAZQTgfY5J
bgkA0G5oKABuCYwskpOT9Xp9bW1teHj4zp07wS0BAJYRgPcJbgkA4JbQUMxY3H3AbOTk5Oh0Oicn
p7i4OH4CFrglAMAyAvA+wS0nuhETfRFjDm4JDcWMxd0HRsmMxSQDsC4CALjlaGzkd0ygvd6BN2Po
RhvcEtoNMwKAWwLglgCAdRHAWo7JP6zccgQHB9wS2o01FAC37N+EwTQDtwSAsTSDAWAoAG45uI2k
xJEjR5ycnOzt7bdv324wGJj85s2bMTExJJw+fXp0dHRDQ8ODBw9mzpxJCZahq6vL0dHx/v37ov5e
vHjRz8/P2trazc3t5MmTRmbBtBkHDx60tbV1dnb++OOPDx06RFW7uLh8+eWXovbIFtjT00PluLu7
29nZxcbGtra2ah8T6vu2bduoilmzZhntgL9jxw62wz4l6FL2RqsO6aA0Ep461lBg3K9Hg8gtzQok
0TIJh00F9Hr9xo0baUWwsrIKCgo6d+7cwHsEqwJuCeA3VwAYe97nmOOWERER/Fjq/fv3M/mCBQtK
Skra29ubm5sTExO3bNlCQkpkZmayDJ999tnKlSsV+jt79uyzZ88SE6urq9u8ebMqHyNe9/Dhw1On
TtnY2FBFLL1o0SKF9pgWmJWVFR4eXl1dTUx4w4YNKSkp2m/Qvn372FDcvXt3yZIl0pO7+cngJH/z
zTdV+yI7pNJj4lQbCe0GOP4LGPUYtdxyUL41Iova0qVLd+3aVV9fT4tIaWnpihUr4F6CWwLglgAA
bjkGuOW1a9dYuqKiwtPT0zQz0TydTkeJqqoqV1fXrq4uSickJOTn5/eK37d0cXHJzc29c+eOwuBI
m9HY2Njb95BQmrayslJoj2mBvr6+N27cYGlyStzc3LTfIOo7H4ry8nKezcPDQyrnQ6TQF9kh5Rm0
NBLaDYBbTmRuefXqVbI8T548YRJK0GVZWZko6oG+kpeXR8bE2tra39+fLJWR2enu7k5LSyMDbmtr
e+zYMaNPlYMpeDaF6BXZYI2BxGjY2Ni0tLSYjoxp8Et2djatCJMmTTKyw7IDQssKLV4sPoXaPKGc
VXBLANwSAMAth4NbdnR0sDQlaBlm6cuXL4eFhZFDwFbxyZMnM/nLL7/8wQcfkKPj4+PT3t6u0N8r
V65ERUU5ODh4e3ufP39elY/JDiBPi9pjVODUqVMn98HCwoI+ov/ax4T6Lh0KXrKRnA+RQl+U8w+k
kdBucEtggjy3fP755y9evMgkFy5cYEEcoqgH+grZ25qaGuJv6enpAQEBRmYnIyMjNDT09u3b9MXk
5GSjT5WDKaS2ThS9IhusMZBAkuDg4KSkpFu3binnp8vVq1ffu3fP1A7LDkhqaury5cvv9SEyMhLc
EgDALQF4n+CWg8wt+UM2SvCHbJQ4ffp0Y2Pj48eP6T/P/9VXX73wwguXLl3atGmTlv4SCy0qKnJ2
dmaX7KflfnBLUXuMCiTGS85E/8ZE+tyyoqJC9bklkUZ+Cpler1cdUp5hII2EdgPABPGg3n333Vde
eYVJ1qxZc/z48V5x1AN9hawQS5Ndmjp1qpHZ8fLy4s/uTA2scjCF1CaLoldkgzUGEkhC+an8uXPn
zpgxY/369abskV/W1tbKrimyA0L2vLKykttncEsAALcE4H2CWw4yt4yMjGS/N1OCv0xIbLCgoKCz
s5M8iZiYGGmnAgMDQ0JCPv/8c+X+rlu3jlZug8FA3HLOnDlM6OjoeP369X5wS1F7jArMycmJiIgg
CdVLk2Tt2rXab1BaWhofCiqEZ9u7dy9/3zIsLCw1NZXJAwIC0tPTW1tbq6urV61apTqkPIOWRkK7
AWCCe1BNTU3Tp09vaGj45ptvKEGXveKoB9WQEGn8hWk25WAKo8Jlo1dkgzUGJUbj/v37KSkptOiI
esojh0VritE48P3YpPEp4JYAAG4JwPvE5B8cbsnek7Gzs9u6dStfdIuLi8lvsLS0dHV1zc3NlXaq
sLBQp9P19PTwEmTft8zPz6cSaCH38/MrKSlhwqysLFtbW9l9YpW5pag9RgVSq+hTX19fKyur+fPn
U1O13yD2Hg6NA42GdJ9Y8j+SkpLYPrGU4C5UeXm5v78/2wj3xIkTqkNqViOh3QAAD+rVV1996623
yBytX7+eSURRD6rc0tvbW+G5pXIwhVHhstErssEagxWj8ejRIxsbG5YWBb9o5JZ4bgluCYBbAgC4
5dByS3O/m5eX98Ybb2A2AuCWADCk9vnChQvP9IG/eCmKelClWJmZmaGhoVVVVbLvWyoHU5guE6bR
K7LBGgMJJFm5cmVpaWlHR0dDQ8Pu3buDg4OZXBT8opFb7t27l79vuWzZMnBLAAC3BOB9gluOJLds
bm4mR4ccCMxGANwSAIbUPj958sS9DzzsUxT1oEqxurq69uzZo9Pp7OzssrOzjT5VDqYwXSZMo1dk
gzUGEkhSVFQUFBREXyQyGRMTU1dXx+Si4BeN3JLIanx8PItPOXDggKWlJbglAIBbAvA+wS1Hhluy
F2bYlhIAAG4JABNzETGKXhmjLl9ZWdm8efPALQEAlhGA98mx5RgAAHymSURBVAluCQ0FoN0AAA9q
BGAavTK2FpTk5GS9Xl9bWxseHr5z505wSwCAZQTgfYJbQkMBaDcAwIMagbaZRq+MrQUlJydHp9M5
OTnFxcXxc6TALQFgzFjGkbI4o9PSwaEHtxzrGjpqe9fvhom+CG2FdgMAFhEA3BIAwC0HvwH8cIVp
06aFhYVJ9yjDggHvE9wS3BIAtwQAcEsA3BIAwC3NK+3Ro0cZGRmLFi3CggHvE9wS3BIAtwSA8b2I
FBQU6HS6/jVpRDoC0w1uCUwUbtnZ2bljxw52/jgl+BbV7Lxye3t7kh85ckSaX1be09Nz8OBBd3d3
Ozu72NjY1tZWJjcYDNu2bWP5peeeSxN5eXlubm7W1tb+/v6mhwhrNFUtLS1UgmqnZOWqvbh582ZM
TAz1Yvr06dHR0Q0NDQNvPLxPLGzKGsr2jqdZt337dtIj1anYv7na3d2dlpbm6upqa2t77NgxZUXQ
ApHKq2qfxhFQ1VYA3BIAhseDMgvvvffeK6+8Yipfs2YNfWRuGzw8PC5dutS/9pi7DzkCxMAtAcAM
y0huZURExN0+LFmyhB+tm5qays+xjYyM5PlF8qysrPDw8Orq6gcPHmzYsCElJYXJ9+3bR+V//fXX
rHxZbhkVFVVTU0OuYXp6ekBAgHaTJH1uefjw4cDAQOVOieSqvViwYEFJSUl7e3tzc3NiYuKWLVu0
Nx7eJ7hl/zSUKQ6BEvv371ediv2bqxkZGaGhobdv35ae3C1SBC3jKVJ5Ve3TOAKq2gqAWwLAKOSW
HR0ds2fPJiMsFdIlCekjc0uzsLDgp2sO6WqIADFwSwAwzzJ6eHhcu3aNpcvLyz09Pbm8srKSpSmD
NL+s3NfX98aNGyxdX1/v5ubG0lSgtHxZbqnX61m6ra1t6tSpZnFL6S9qV65cUe2UrFy1F1I8fPhQ
p9Npbzy8T3DL/mkon6sVFRV8ripMxf7NVS8vL9Pn7VoUQTSeIpVX1T6NI2CWtgLglgAwuPZZ6ngw
+cWLF/38/KytrckKnTx5kgllQ0jS09P5T3gMO3bsIGGvOBCDasnOziZLPmnSJFEb+h1BZu7SiQAx
cEsAUOeWpKv8BzNKcKtBCW4RSC7NLysnV3VyHywsLNhe2LLly3LLgf+c1t7enpWVFRISotopWblq
Ly5fvhwWFkZ2kJlyyjDwxsP7BLdU1lDZuao6Fc2dq1Kl4BApghaIVF5V+zSOgKq2AuCWADA8HhTD
7Nmzz549S65RXV3d5s2bmVA2hIT4EjEukrA8TU1NTk5OjESJAjGortWrV9+7d0+hDf2OINOyRCJA
DNwSAMyzjIP13NLHx8co0oNB+hCjoqJiiLglgYwOfxTT7+eWCr04ffp0Y2Pj48eP6f+gNB7eJ7il
sobyuUoJPldVp6K5c9Xb29v0Z2CRImiBSOVF2kekkR9lptfrVUdAVVsBcEsAGE5u6eLikpube+fO
HdEXpSEkW7duPXr0KEsfOXKELllaFIhBddXW1iq3od8RZBq5JQLEwC0BwAzLuHfvXv4LU1hYWGpq
Kpfz9yqXLVsmzS8rz8nJoXKuX79uMBhIPdauXct/wYqMjOQvTfWPW6r+nNbe3k4N8PPzU+2UrFy1