|
| 1 | +\documentclass[../Aluffi_Algebra.tex]{subfiles} |
| 2 | + |
| 3 | +\begin{document} |
| 4 | + |
| 5 | +\begin{defn} |
| 6 | + Let \(a, b \in \Z\). We say that `\(b\) divides \(a\)', or `\(b\) is a divisor of \(a\)', |
| 7 | + or `\(a\) is a multiple of \(b\)', and write \(b \mid a\), is an \emph{integer} \(c \in \Z\) such that \(a = bc\). |
| 8 | +\end{defn} |
| 9 | + |
| 10 | +\begin{lem} |
| 11 | + If \(b \mid a\) and \(a \neq 0\), then \(\abs{b} \leq \abs{a}\). |
| 12 | +\end{lem} |
| 13 | + |
| 14 | +\begin{fact}[Well-ordering Principle] |
| 15 | + Every nonempty set of nonnegative integers contains a least element. |
| 16 | +\end{fact} |
| 17 | + |
| 18 | +\begin{thm}[Division with remainder] |
| 19 | + Let \(a, b \in \Z\) with \(b \neq 0\). Then there exists a unique `quotient' \(q \in \Z\) and a |
| 20 | + unique `remainder' \(r \in \Z\) such that |
| 21 | + \[ a = bq + r \qquad\text{with } \abs{r} < \abs{b}. \] |
| 22 | +\end{thm} |
| 23 | + |
| 24 | +\stepcounter{thm} |
| 25 | + |
| 26 | +\begin{defn} |
| 27 | + Let \(a,b \in \Z\). We say that a nonnegative integer \(d\) is the `greatest common divisor' of \(a\) and \(b\), |
| 28 | + denoted \(\gcd(a,b)\) or simply \((a,b)\), if |
| 29 | + \begin{itemize} |
| 30 | + \item \(d \mid a\) and \(d \mid b\); and |
| 31 | + \item if \(c \mid a\) and \(c \mid \)b, then \(c \mid d\). |
| 32 | + \end{itemize} |
| 33 | +\end{defn} |
| 34 | + |
| 35 | +\stepcounter{thm} |
| 36 | +\stepcounter{thm} |
| 37 | + |
| 38 | +\begin{thm} |
| 39 | + Let \(a, b \in \Z\). Then the greatest common divisor \(d = \gcd(a,b)\) is an integer linear combination of \(a\) |
| 40 | + and \(b\). That is, there exists integers \(m\) and \(n\) such that \(d = ma + nb\). |
| 41 | + \\ \\ |
| 42 | + In fact, if \(a\) and \(b\) are not both 0, then \(\gcd(a,b)\) is the smallest positive linear combination |
| 43 | + of \(a\) and \(b\). |
| 44 | +\end{thm} |
| 45 | + |
| 46 | +\begin{cor} |
| 47 | + Let \(a, b \in \Z\). Then \(\gcd(a,b) = 1\) if and only if \(1\) may be expressed as a linear combination of \(a\) and \(b\). |
| 48 | +\end{cor} |
| 49 | + |
| 50 | +\begin{defn} |
| 51 | + We say that \(a\) and \(b\) are \emph{relatively prime} if \(\gcd(a,b) = 1\). |
| 52 | +\end{defn} |
| 53 | + |
| 54 | +\begin{cor} |
| 55 | + Let \(a, b, c \in \Z\). If \(a \mid bc\) and \(\gcd(a,b) = 1\), then \(a \mid c\). |
| 56 | +\end{cor} |
| 57 | + |
| 58 | +\stepcounter{thm} |
| 59 | +\stepcounter{thm} |
| 60 | + |
| 61 | +\begin{thm}[Euclidean Algorithm] |
| 62 | + Let \(a, b, \in \Z\), with \(b \neq 0\). Then with notation as above, |
| 63 | + \(\gcd(a, b)\) equals the last nonzero remainder \(r_n\).\\ |
| 64 | + More explicitely: let \(r_{-2} = a\) and \(r_{-1} = b\); for \(i \geq 0\), let \(r_i\) be the remainder of the |
| 65 | + division of \(r_{i-2}\) by \(r_{i-1}\). Then there is an integer \(n\) such |
| 66 | + that \(r_n \neq 0\) and \(rn_{n+1} = 0\), and \(\gcd(a,b) = r_n\). |
| 67 | +\end{thm} |
| 68 | + |
| 69 | +\begin{lem} |
| 70 | + Let \(a, b, q, r \in \Z\), with \(b \neq 0\), and assume that \(a = bq + r\). Then \(\gcd(a,b) = \gcd(b,r)\). |
| 71 | +\end{lem} |
| 72 | + |
| 73 | +\stepcounter{thm} |
| 74 | + |
| 75 | +\begin{defn} |
| 76 | + An integer \(p\) is `irreducable' if \(p \neq \pm 1\) and the only divisors of \(p\) are \(\pm 1, \pm p\).\\ |
| 77 | + An integer \(\neq 0, \neq \pm 1\) is `reducible' or `composite' if it is not irreducable. |
| 78 | +\end{defn} |
| 79 | + |
| 80 | +\begin{lem} |
| 81 | + Assume that \(p\) is an irreducible integer and that \(b\) is not a multiple of \(p\). Then \(b\) and \(p\) |
| 82 | + are relatively prime, that is, \(\gcd(p,b) = 1\). |
| 83 | +\end{lem} |
| 84 | + |
| 85 | +\begin{defn} |
| 86 | + An integer \(p\) is `prime' if \(p \neq \pm 1\) and whenver \(p\) divides the product \(bc\) of two integers |
| 87 | + \(b,c\), then \(p \mid b\) or \(p \mid c\). |
| 88 | +\end{defn} |
| 89 | + |
| 90 | +\stepcounter{thm} |
| 91 | + |
| 92 | +\begin{thm} |
| 93 | + Let \(p \in \Z, p \neq 0\). Then \(p\) is prime if and only if it is irreducable. |
| 94 | +\end{thm} |
| 95 | + |
| 96 | +\begin{thm}[Fundamental Theorem of Arithmetic] |
| 97 | + Every integer \(n \neq 0, \neq \pm 1\) is a product of finitely many irredicubile integers: \(\forall n \in \Z, n |
| 98 | + \neq 0, n \neq \pm 1\), there exists irreducible integers \(q_1, \ldots, q_r\) such that |
| 99 | + \[ n = q_1 \cdots q_r, \] |
| 100 | + \[ n = \prod_r q_r. \] |
| 101 | + Further, this factorization is unique in the sense that if |
| 102 | + \[ n = q_1 \cdots q_r = p_1 \cdots p_s, \] |
| 103 | + with all \(q_i, p_j\) irreducible, then necessarily \(s = r\) and after reordering the factors we have |
| 104 | + \(p_1 = \pm q_1, p_2 = \pm q_2, \ldots, p_r = \pm q_r\). |
| 105 | +\end{thm} |
| 106 | + |
| 107 | +\stepcounter{thm} |
| 108 | +\stepcounter{thm} |
| 109 | + |
| 110 | +\begin{prop} |
| 111 | + Let \(a, b \in \Z^{\neq 0}\), and write |
| 112 | + \[a = \pm 2^{\alpha_2} 3^{\alpha_3} 5^{\alpha_5} 7^{\alpha_7} 11^{\alpha_{11} }\cdots,\] |
| 113 | + \[b = \pm 2^{\beta_2} 3^{\beta_3} 5^{\beta_5} 7^{\beta_7} 11^{\beta_{11} }\cdots,\] |
| 114 | + as above. Then the \(\gcd\) of \(a\) and \(b\) is the positive integer |
| 115 | + \[d = 2^{\delta_2} 3^{\delta_3} 5^{\delta_5} 7^{\delta_7} 11^{\delta_11}\cdots,\] |
| 116 | + where \(\delta_i = \min(\alpha_i,\beta_i)\) for all \(i\). |
| 117 | +\end{prop} |
| 118 | + |
| 119 | +\stepcounter{thm} |
| 120 | + |
| 121 | +\begin{cor} |
| 122 | + Two nonzero integers \(a, b\) are relatively prime if and only if they have no common irreducible factor. |
| 123 | +\end{cor} |
| 124 | + |
| 125 | +\end{document} |
0 commit comments