Skip to content

Commit e3de439

Browse files
committed
Add aluffi chapter 1
1 parent ef7a0af commit e3de439

File tree

5 files changed

+176
-0
lines changed

5 files changed

+176
-0
lines changed

Aluffi Algebra/Aluffi_Algebra.pdf

125 KB
Binary file not shown.

Aluffi Algebra/Aluffi_Algebra.tex

Lines changed: 41 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,41 @@
1+
2+
\documentclass[a4paper, 12pt]{report}
3+
4+
\usepackage[top=36pt,bottom=36pt,left=48pt,right=48pt,marginparwidth=110pt,marginparsep=-80pt]{geometry}
5+
\usepackage{marginnote}
6+
\usepackage{enumitem}
7+
\usepackage{relsize}
8+
\usepackage{setspace}
9+
\usepackage{mathtools}
10+
\usepackage{amssymb}
11+
\usepackage{amsthm}
12+
\usepackage{commath}
13+
\usepackage{subfiles}
14+
15+
% theorem, definition, etc. styles
16+
\newtheorem{thm}{Theorem}[chapter]
17+
\newtheorem{cor}[thm]{Corrollary}
18+
\newtheorem{lem}[thm]{Lemma}
19+
\newtheorem{prop}[thm]{Proposition}
20+
\newtheorem*{fact}{Fact}
21+
\theoremstyle{definition}
22+
\newtheorem{defn}[thm]{Definition}
23+
24+
% commands
25+
\newcommand*{\N}{\mathbb{N}} % natural numbers
26+
\newcommand*{\Z}{\mathbb{Z}} % integers
27+
% \newcommand*{\gcd}[2]{\mathrm{gcd}(#1,#2)} % greatest common divisor
28+
29+
\begin{document}
30+
31+
\chapter{The Integers}
32+
\label{ch:intgs}
33+
34+
\subfile{sections/1_the_integers.tex}
35+
36+
\chapter{Modular Arithmetic}
37+
\label{ch:mod_arth}
38+
39+
\subfile{sections/2_modular_arithmetic.tex}
40+
41+
\end{document}
Lines changed: 125 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,125 @@
1+
\documentclass[../Aluffi_Algebra.tex]{subfiles}
2+
3+
\begin{document}
4+
5+
\begin{defn}
6+
Let \(a, b \in \Z\). We say that `\(b\) divides \(a\)', or `\(b\) is a divisor of \(a\)',
7+
or `\(a\) is a multiple of \(b\)', and write \(b \mid a\), is an \emph{integer} \(c \in \Z\) such that \(a = bc\).
8+
\end{defn}
9+
10+
\begin{lem}
11+
If \(b \mid a\) and \(a \neq 0\), then \(\abs{b} \leq \abs{a}\).
12+
\end{lem}
13+
14+
\begin{fact}[Well-ordering Principle]
15+
Every nonempty set of nonnegative integers contains a least element.
16+
\end{fact}
17+
18+
\begin{thm}[Division with remainder]
19+
Let \(a, b \in \Z\) with \(b \neq 0\). Then there exists a unique `quotient' \(q \in \Z\) and a
20+
unique `remainder' \(r \in \Z\) such that
21+
\[ a = bq + r \qquad\text{with } \abs{r} < \abs{b}. \]
22+
\end{thm}
23+
24+
\stepcounter{thm}
25+
26+
\begin{defn}
27+
Let \(a,b \in \Z\). We say that a nonnegative integer \(d\) is the `greatest common divisor' of \(a\) and \(b\),
28+
denoted \(\gcd(a,b)\) or simply \((a,b)\), if
29+
\begin{itemize}
30+
\item \(d \mid a\) and \(d \mid b\); and
31+
\item if \(c \mid a\) and \(c \mid \)b, then \(c \mid d\).
32+
\end{itemize}
33+
\end{defn}
34+
35+
\stepcounter{thm}
36+
\stepcounter{thm}
37+
38+
\begin{thm}
39+
Let \(a, b \in \Z\). Then the greatest common divisor \(d = \gcd(a,b)\) is an integer linear combination of \(a\)
40+
and \(b\). That is, there exists integers \(m\) and \(n\) such that \(d = ma + nb\).
41+
\\ \\
42+
In fact, if \(a\) and \(b\) are not both 0, then \(\gcd(a,b)\) is the smallest positive linear combination
43+
of \(a\) and \(b\).
44+
\end{thm}
45+
46+
\begin{cor}
47+
Let \(a, b \in \Z\). Then \(\gcd(a,b) = 1\) if and only if \(1\) may be expressed as a linear combination of \(a\) and \(b\).
48+
\end{cor}
49+
50+
\begin{defn}
51+
We say that \(a\) and \(b\) are \emph{relatively prime} if \(\gcd(a,b) = 1\).
52+
\end{defn}
53+
54+
\begin{cor}
55+
Let \(a, b, c \in \Z\). If \(a \mid bc\) and \(\gcd(a,b) = 1\), then \(a \mid c\).
56+
\end{cor}
57+
58+
\stepcounter{thm}
59+
\stepcounter{thm}
60+
61+
\begin{thm}[Euclidean Algorithm]
62+
Let \(a, b, \in \Z\), with \(b \neq 0\). Then with notation as above,
63+
\(\gcd(a, b)\) equals the last nonzero remainder \(r_n\).\\
64+
More explicitely: let \(r_{-2} = a\) and \(r_{-1} = b\); for \(i \geq 0\), let \(r_i\) be the remainder of the
65+
division of \(r_{i-2}\) by \(r_{i-1}\). Then there is an integer \(n\) such
66+
that \(r_n \neq 0\) and \(rn_{n+1} = 0\), and \(\gcd(a,b) = r_n\).
67+
\end{thm}
68+
69+
\begin{lem}
70+
Let \(a, b, q, r \in \Z\), with \(b \neq 0\), and assume that \(a = bq + r\). Then \(\gcd(a,b) = \gcd(b,r)\).
71+
\end{lem}
72+
73+
\stepcounter{thm}
74+
75+
\begin{defn}
76+
An integer \(p\) is `irreducable' if \(p \neq \pm 1\) and the only divisors of \(p\) are \(\pm 1, \pm p\).\\
77+
An integer \(\neq 0, \neq \pm 1\) is `reducible' or `composite' if it is not irreducable.
78+
\end{defn}
79+
80+
\begin{lem}
81+
Assume that \(p\) is an irreducible integer and that \(b\) is not a multiple of \(p\). Then \(b\) and \(p\)
82+
are relatively prime, that is, \(\gcd(p,b) = 1\).
83+
\end{lem}
84+
85+
\begin{defn}
86+
An integer \(p\) is `prime' if \(p \neq \pm 1\) and whenver \(p\) divides the product \(bc\) of two integers
87+
\(b,c\), then \(p \mid b\) or \(p \mid c\).
88+
\end{defn}
89+
90+
\stepcounter{thm}
91+
92+
\begin{thm}
93+
Let \(p \in \Z, p \neq 0\). Then \(p\) is prime if and only if it is irreducable.
94+
\end{thm}
95+
96+
\begin{thm}[Fundamental Theorem of Arithmetic]
97+
Every integer \(n \neq 0, \neq \pm 1\) is a product of finitely many irredicubile integers: \(\forall n \in \Z, n
98+
\neq 0, n \neq \pm 1\), there exists irreducible integers \(q_1, \ldots, q_r\) such that
99+
\[ n = q_1 \cdots q_r, \]
100+
\[ n = \prod_r q_r. \]
101+
Further, this factorization is unique in the sense that if
102+
\[ n = q_1 \cdots q_r = p_1 \cdots p_s, \]
103+
with all \(q_i, p_j\) irreducible, then necessarily \(s = r\) and after reordering the factors we have
104+
\(p_1 = \pm q_1, p_2 = \pm q_2, \ldots, p_r = \pm q_r\).
105+
\end{thm}
106+
107+
\stepcounter{thm}
108+
\stepcounter{thm}
109+
110+
\begin{prop}
111+
Let \(a, b \in \Z^{\neq 0}\), and write
112+
\[a = \pm 2^{\alpha_2} 3^{\alpha_3} 5^{\alpha_5} 7^{\alpha_7} 11^{\alpha_{11} }\cdots,\]
113+
\[b = \pm 2^{\beta_2} 3^{\beta_3} 5^{\beta_5} 7^{\beta_7} 11^{\beta_{11} }\cdots,\]
114+
as above. Then the \(\gcd\) of \(a\) and \(b\) is the positive integer
115+
\[d = 2^{\delta_2} 3^{\delta_3} 5^{\delta_5} 7^{\delta_7} 11^{\delta_11}\cdots,\]
116+
where \(\delta_i = \min(\alpha_i,\beta_i)\) for all \(i\).
117+
\end{prop}
118+
119+
\stepcounter{thm}
120+
121+
\begin{cor}
122+
Two nonzero integers \(a, b\) are relatively prime if and only if they have no common irreducible factor.
123+
\end{cor}
124+
125+
\end{document}
Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,10 @@
1+
\documentclass[../Aluffi_Algebra.tex]{subfiles}
2+
3+
\begin{document}
4+
5+
\begin{defn}
6+
Let \(n \geq 0\) be an integer, and let \(a, b \in \Z\). We say that `\(a\) is congruent to \(b\) modulo \(n\)',
7+
denoted \(a \equiv b \mod n\), if \(b - a \in n\Z\).
8+
\end{defn}
9+
10+
\end{document}

0 commit comments

Comments
 (0)