forked from abeardear/pytorch-YOLO-v1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
165 lines (146 loc) · 5.48 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
from torchvision import models
from torch.autograd import Variable
from net import vgg16, vgg16_bn
from resnet_yolo import resnet50, resnet18
from yoloLoss import yoloLoss
from dataset import yoloDataset
from visualize import Visualizer
import numpy as np
use_gpu = torch.cuda.is_available()
file_root = '/home/xzh/data/VOCdevkit/VOC2012/allimgs/'
learning_rate = 0.001
num_epochs = 50
batch_size = 24
use_resnet = True
if use_resnet:
net = resnet50()
else:
net = vgg16_bn()
# net.classifier = nn.Sequential(
# nn.Linear(512 * 7 * 7, 4096),
# nn.ReLU(True),
# nn.Dropout(),
# #nn.Linear(4096, 4096),
# #nn.ReLU(True),
# #nn.Dropout(),
# nn.Linear(4096, 1470),
# )
#net = resnet18(pretrained=True)
#net.fc = nn.Linear(512,1470)
# initial Linear
# for m in net.modules():
# if isinstance(m, nn.Linear):
# m.weight.data.normal_(0, 0.01)
# m.bias.data.zero_()
print(net)
#net.load_state_dict(torch.load('yolo.pth'))
print('load pre-trined model')
if use_resnet:
resnet = models.resnet50(pretrained=True)
new_state_dict = resnet.state_dict()
dd = net.state_dict()
for k in new_state_dict.keys():
print(k)
if k in dd.keys() and not k.startswith('fc'):
print('yes')
dd[k] = new_state_dict[k]
net.load_state_dict(dd)
else:
vgg = models.vgg16_bn(pretrained=True)
new_state_dict = vgg.state_dict()
dd = net.state_dict()
for k in new_state_dict.keys():
print(k)
if k in dd.keys() and k.startswith('features'):
print('yes')
dd[k] = new_state_dict[k]
net.load_state_dict(dd)
if False:
net.load_state_dict(torch.load('best.pth'))
print('cuda', torch.cuda.current_device(), torch.cuda.device_count())
criterion = yoloLoss(7,2,5,0.5)
if use_gpu:
net.cuda()
net.train()
# different learning rate
params=[]
params_dict = dict(net.named_parameters())
for key,value in params_dict.items():
if key.startswith('features'):
params += [{'params':[value],'lr':learning_rate*1}]
else:
params += [{'params':[value],'lr':learning_rate}]
optimizer = torch.optim.SGD(params, lr=learning_rate, momentum=0.9, weight_decay=5e-4)
# optimizer = torch.optim.Adam(net.parameters(),lr=learning_rate,weight_decay=1e-4)
# train_dataset = yoloDataset(root=file_root,list_file=['voc12_trainval.txt','voc07_trainval.txt'],train=True,transform = [transforms.ToTensor()] )
train_dataset = yoloDataset(root=file_root,list_file=['voc2012.txt','voc2007.txt'],train=True,transform = [transforms.ToTensor()] )
train_loader = DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=4)
# test_dataset = yoloDataset(root=file_root,list_file='voc07_test.txt',train=False,transform = [transforms.ToTensor()] )
test_dataset = yoloDataset(root=file_root,list_file='voc2007test.txt',train=False,transform = [transforms.ToTensor()] )
test_loader = DataLoader(test_dataset,batch_size=batch_size,shuffle=False,num_workers=4)
print('the dataset has %d images' % (len(train_dataset)))
print('the batch_size is %d' % (batch_size))
logfile = open('log.txt', 'w')
num_iter = 0
vis = Visualizer(env='xiong')
best_test_loss = np.inf
for epoch in range(num_epochs):
net.train()
# if epoch == 1:
# learning_rate = 0.0005
# if epoch == 2:
# learning_rate = 0.00075
# if epoch == 3:
# learning_rate = 0.001
if epoch == 30:
learning_rate=0.0001
if epoch == 40:
learning_rate=0.00001
# optimizer = torch.optim.SGD(net.parameters(),lr=learning_rate*0.1,momentum=0.9,weight_decay=1e-4)
for param_group in optimizer.param_groups:
param_group['lr'] = learning_rate
print('\n\nStarting epoch %d / %d' % (epoch + 1, num_epochs))
print('Learning Rate for this epoch: {}'.format(learning_rate))
total_loss = 0.
for i,(images,target) in enumerate(train_loader):
images = Variable(images)
target = Variable(target)
if use_gpu:
images,target = images.cuda(),target.cuda()
pred = net(images)
loss = criterion(pred,target)
total_loss += loss.data[0]
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 5 == 0:
print ('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f, average_loss: %.4f'
%(epoch+1, num_epochs, i+1, len(train_loader), loss.data[0], total_loss / (i+1)))
num_iter += 1
vis.plot_train_val(loss_train=total_loss/(i+1))
#validation
validation_loss = 0.0
net.eval()
for i,(images,target) in enumerate(test_loader):
images = Variable(images,volatile=True)
target = Variable(target,volatile=True)
if use_gpu:
images,target = images.cuda(),target.cuda()
pred = net(images)
loss = criterion(pred,target)
validation_loss += loss.data[0]
validation_loss /= len(test_loader)
vis.plot_train_val(loss_val=validation_loss)
if best_test_loss > validation_loss:
best_test_loss = validation_loss
print('get best test loss %.5f' % best_test_loss)
torch.save(net.state_dict(),'best.pth')
logfile.writelines(str(epoch) + '\t' + str(validation_loss) + '\n')
logfile.flush()
torch.save(net.state_dict(),'yolo.pth')