forked from data-8/data-8.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresources.html
469 lines (434 loc) · 22.3 KB
/
resources.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
<!DOCTYPE html>
<html lang="en">
<head>
<title>Resources</title>
<!-- Latest compiled and minified Bootstrap CSS -->
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous">
<link rel="stylesheet" href="./theme/css/main.css" />
</head>
<body id="index" class="home">
<nav class="navbar navbar-default navbar-fixed-top">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false" aria-controls="navbar">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="./">
Data 8 Summer 2017
</a>
</div>
<div id="navbar" class="collapse navbar-collapse">
<ul class="nav navbar-nav">
<li><a href="./office-hours.html">Office Hours</a></li>
<li><a href="./policies.html">Policies</a></li>
<li class="active"><a href="./resources.html">Resources</a></li>
<li><a href="./schedule.html">Schedule</a></li>
<li><a href="./staff.html">Staff</a></li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false">Links <span class="caret"></span></a>
<ul class="dropdown-menu">
<li><a href="http://data8.org/connector/">Connectors</a></li>
<li><a href="http://datahub.berkeley.edu">DataHub</a></li>
<li><a href="http://data8.org/datascience/">Datascience Docs</a></li>
<li><a href="https://piazza.com">Piazza</a></li>
</ul>
</li>
</ul>
</div><!--/.nav-collapse -->
</div>
</nav>
<div class="container">
<h2>Resources</h2>
<style>
th {
text-align: left
}
table > thead > tr > th, table > tbody > tr > th, table > tfoot > tr > th, table > thead > tr > td,
table > tbody > tr > td, table > tfoot > tr > td {
padding: 8px;
line-height: 1.42857143;
vertical-align: top;
border-top: 1px solid #ddd
}
table > thead > tr > th {
vertical-align: bottom;
border-bottom: 2px solid #ddd
}
table > caption + thead > tr:first-child > th, table > colgroup + thead > tr:first-child > th,
table > thead:first-child > tr:first-child > th, table > caption + thead > tr:first-child > td,
table > colgroup + thead > tr:first-child > td, table > thead:first-child > tr:first-child > td {
border-top: 0
}
table > tbody + tbody {
border-top: 2px solid #ddd
}
table {
border: 1px solid #ddd;
border-spacing: 0;
border-collapse: collapse;
background-color: #fff;
width: 100%;
max-width: 100%;
margin-bottom: 20px
}
td, th {
padding: 0
}
table > thead > tr > th, table > tbody > tr > th, table > tfoot > tr > th,
table > thead > tr > td, table > tbody > tr > td, table > tfoot > tr > td {
border: 1px solid #ddd
}
table > thead > tr > th, table > thead > tr > td {
border-bottom-width: 2px
}
table > tbody > tr:nth-child(odd) {
background-color: #f9f9f9
}
</style>
<h3>Final Review!</h3>
<ul>
<li><a href="http://data8.org/data8assets/exam/stats_final_review.pdf">Comprehensive review</a> of statistical concepts: steps, examples, purpose of topics like hypothesis testing, confidence intervals, correlation, regression, classification, two-sample inference, central limit theorem, Bayes' Rule, and more. Thanks to Francie McQuarrie for this!</li>
</ul>
<h3>Tutoring Worksheets</h3>
<ul>
<li><a href="https://drive.google.com/drive/folders/0B6G6jd0Ynn7jbXhaeXlRdDFkV2c?usp=sharing">Worksheets from tutoring sections</a> this semester are available for review. To use the provided files, you'll have to start by downloading the desired zip file to your computer and double clicking on it to expand it into a folder. Then, navigate to <a href = "data8.haas.berkeley.edu">Jupyterhub</a> and upload the files in the folder to your files by clicking the "upload" button in the top righthand corner and selecting the desired files. (Please note, you must upload the files from inside the unzipped folder, not the zip file itself.) Once your files are uploaded to Jupyterhub, open the notebook, which is a .ipynb file, and get to work! Email Emma for technical help with uploading files or come to office hours.</li>
</ul>
<h3>Lab Slides</h3>
<a href=https://drive.google.com/open?id=0Bzffj9tNMxVlN0haTDZ6RnpCeE0> Lab slides </a> for Nanxi and Katherine's section (MW, 1-3pm)
<h3>Practice Exams</h3>
<p>Midterms:</p>
<ul>
<li> <a href="http://data8.org/data8assets/exam/data8-su17-midterm.pdf"> Summer 2017 midterm </a> and
<a href="http://data8.org/data8assets/exam/data8-su17-midterm-solution.pdf"> solution </a>
<li><a href="http://data8.org/data8assets/exam/data8-sp17-midterm.pdf">Spring 2017 midterm</a>,
<a href="http://data8.org/data8assets/exam/data8-sp17-midterm-solution.pdf">solution</a>, and
<a href="https://youtu.be/LPMzXlYf8n8">video walkthrough</a>.</li>
<li><a href="http://data8.org/data8assets/exam/data8-sp17-practice.pdf">Spring 2017 practice midterm</a>,
<a href="http://data8.org/data8assets/exam/data8-sp17-practice-solution.pdf">solution</a>, and
<a href="https://youtu.be/i8dXfBnr1ng">video walkthrough</a>.
The practice midterm is the Spring 2016 midterm, but modified to only include topics covered in Summer 2017.</li>
<li><a href="http://data8.org/data8assets/exam/data8-fa16-midterm.pdf">Fall 2016 midterm</a> and
<a href="https://youtu.be/LR8Zfa1JovA">video walkthrough</a>.
This exam only includes questions on topics covered in Summer 2017.</li>
</ul>
<p>Finals:</p>
<ul>
<li> <a href="http://data8.org/data8assets/exam/data8-sp17-final.pdf"> Spring 2017 final </a> and
<a href="http://data8.org/data8assets/exam/data8-sp17-final-solution.pdf"> solution </a> </li>
<li><a href="http://data8.org/data8assets/exam/data8-sp17-practice-final.pdf">Spring 2017 practice final</a>,
<a href="http://data8.org/data8assets/exam/data8-sp17-practice-final-solution.pdf">solution</a>, and
<a href="https://youtu.be/oaNolUkZTL0">video walkthrough</a>.
The practice final is the Spring 2016 final, but with modified solutions that use the Summer 2017 version of the <code>datascience</code> module.</li>
<li><a href="http://data8.org/data8assets/exam/data8-fa16-final.pdf">Fall 2016 final</a> and
<a href="https://youtu.be/YeK-pRlZ5co">video walkthrough</a>.
All topics were covered in Summer 2017.</li>
<li> Another <a href="https://d1b10bmlvqabco.cloudfront.net/attach/ijdg22juvgh64x/hbzwvzjut0l5xi/io0b1txacwu/Practice_Final_Questions.pdf"> practice final </a> and
<a href="https://d1b10bmlvqabco.cloudfront.net/attach/ijdg22juvgh64x/hbzwvzjut0l5xi/inyo9axy4srk/Practice_Final.pdf"> solutions </a> </li>
</ul>
<h3>Exam Study Guides</h3>
<ul>
<li>The <a href="http://data8.org/data8assets/exam/data8-sp17-midterm-guide.pdf">midterm study guide</a> will be distributed with the midterm exam and the final exam.</li>
<li>The <a href="http://data8.org/data8assets/exam/data8-sp17-final-guide.pdf">final study guide</a> will be distributed with the final exam.</li>
</ul>
<h3>Staff Solutions</h3>
<p> Please note that you will need to be signed into your berkeley.edu email account <b>as your default account</b> to access the Google Drive folders. </p>
<ul>
<li> Homework: <a href="https://drive.google.com/open?id=0B19_9dl-RefTaE5nMEFyVm93bUk"> homework solutions </a> </li>
<li> Lab: <a href="https://drive.google.com/open?id=0B19_9dl-RefTZUZZMXdScU5pd2s"> lab solutions </a> </li>
<li> Discussion: <a href="https://drive.google.com/open?id=0B19_9dl-RefTT09IYkl1S2sxWWM"> discussion solutions </a> </li>
<li> Project: <a href="https://drive.google.com/open?id=0B19_9dl-RefTelBJb0lhc21DVWs"> project solutions </a> </li>
</ul>
<h3>Discussion Video Walkthroughs</h3>
<ul>
<li><a href="https://youtu.be/xLeztd2apJo">Regression</a></li>
<li><a href="https://youtu.be/NQ1vRBzZZuw">Confidence Intervals and Bootstrap</a></li>
<li> <a href="https://www.youtube.com/watch?v=eFNtqDaQbIM&feature=youtu.be">Permutation, A/B Testing, and Conditional Probability </a></li>
</ul>
<h3>Additional Dataset Questions</h3>
<p><a href="https://docs.google.com/document/d/1WzbIWqBx4bWXfZljUqsQKdit9_etbCQo0dx3ZMYmYT8/edit?usp=sharing">We've compiled a list of additional questions for our datasets here</a> if you'd like more practice or want to do your own independent data investigation.</p>
<p><br /></p>
<h3>Table Functions and Methods</h3>
<p>In the examples in the left column, <code>np</code> refers to the NumPy module, as usual. Everything else is a function,
a method, an example of an argument to a function or method, or an example of an object we might call the method on.
For example, <code>tbl</code> refers to a table, <code>array</code> refers to an array, and <code>num</code> refers to a number.
<code>array.item(0)</code> is an example call for the method <code>item</code>, and in that example, <code>array</code> is the name previously given to some array.
</p>
<table>
<colgroup>
<col width="325"/>
<col width="65"/>
<col width="1130"/>
</colgroup>
<tbody>
</tbody>
<thead>
<tr>
<th>Example Function Call</th>
<th align="center">Chapter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Table()</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/05/tables.html">5</a></td>
<td>Creates an empty table, usually to extend with data.</td>
</tr>
<tr>
<td><code>Table().read_table(filename)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/05/tables.html">5</a></td>
<td>Creates a table from a data file.</td>
</tr>
<tr>
<td>
<code>tbl.with_column(name, values)</code> <br>
<code>tbl.with_columns(n1, v1, n2, v2, ...)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/05/tables.html">5</a></td>
<td>A table with an additional or replaced column or columns. <code>name</code>is a string for the name of a column, <code> values </code> is an
array.</td>
</tr>
<tr>
<td><code>tbl.column(column_name_or_index)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/05/tables.html">5</a></td>
<td>The values of a column (an array)</td>
</tr>
<tr>
<td><code>tbl.num_rows</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/05/tables.html">5</a></td>
<td>The number of rows in a table.</td>
</tr>
<tr>
<td><code>tbl.num_columns</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/05/tables.html">5</a></td>
<td>The number of columns in a table.</td>
</tr>
<tr>
<td><code>tbl.labels</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/05/tables.html">5</a></td>
<td>A list of the column labels in a table.</td>
</tr>
<tr>
<td><code>tbl.select(col1, col2, ...)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/05/tables.html">5</a></td>
<td>Creates a copy of a table with only selected columns. Each column is the column name or index. </td>
</tr>
<tr>
<td><code>tbl.drop(col1, col2, ...)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/05/tables.html">5</a></td>
<td>Creates a copy of a table without selected columns. Each column is the column name or index.</td>
</tr>
<tr>
<td><code>tbl.relabel(old_label, new_label)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/05/tables.html">5</a></td>
<td>Modifies the existing table <em>in place</em>, changing the column heading in the first argument to the second.</td>
</tr>
<tr>
<td><code>tbl.relabeled(old_label, new_label)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/05/tables.html">5</a></td>
<td>Returns a new table with the column heading in the first argument changed to the second.</td>
</tr>
<tr>
<td><code>tbl.sort(column_name_or_index)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/05/1/sorting-rows.html">5.1</a></td>
<td>Creates a copy of a table sorted by the values in a column. Defaults to ascending order unless optional argument "descending = True" is included.</td>
</tr>
<tr>
<td><code>tbl.where(column, predicate)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/05/2/selecting-rows.html">5.2</a></td>
<td>A table of the rows for which the column satisfies some predicate. See <code>Table.where predicates </code> below.</td>
</tr>
<tr>
<td><code>tbl.take(row_indices)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/05/2/selecting-rows.html">5.2</a></td>
<td>A table with only the rows at the given indices. <code>row_indices</code> is an array of indices.</td>
</tr>
<tr>
<td><code>tbl.scatter(x_column, y_column)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/06/visualization.html">6</a></td>
<td>Draws a scatter plot consisting of one point for each row of the table. Note that <code>x_column</code> and <code>y_column</code> must be strings specifying column names.</td>
</tr>
<tr>
<td>
<code>tbl.barh(categories)</code> <br>
<code>tbl.barh(categories, values)</code>
</td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/06/1/visualizing-categorical-distributions.html">6.1</a></td>
<td>Displays a bar chart with bars for each category in a column, with height proportional to the corresponding
frequency. values argument unnecessary if table has only a column of categories and a column of values.</td>
</tr>
<tr>
<td><code>tbl.hist(column, units, bins)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/06/2/visualizing-numerical-distributions.html">6.2</a></td>
<td>Generates a histogram of the numerical values in a column. <code>units</code> and <code>bins</code> are optional arguments, used to label
the axes and group the values into intervals (bins), respectively. Bins have the form [a, b).
</td>
</tr>
<tr>
<td><code>tbl.apply(function, column)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/07/1/applying-a-function-to-a-column.html">7.1</a></td>
<td>Returns an array of values resulting from applying a function to each item in a column.</td>
</tr>
<tr>
<td><code>tbl.group(column_or_columns, func)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/07/2/classifying-by-one-variable.html">7.2</a>, <a href="https://www.inferentialthinking.com/chapters/07/3/cross-classifying-by-more-than-one-variable.html">7.3</a></td>
<td>Group rows by unique values or combinations of values in a column(s). Multiple columns must be entered in array or list form. Other values aggregated by count (default) or optional argument <code>func</code>.</td>
</tr>
<tr>
<td><code>tbl.pivot(col1, col2, vals, collect)</code><br>
<code>tbl.pivot(col1, col2)</code>
</td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/07/3/cross-classifying-by-more-than-one-variable.html">7.3</a></td>
<td>A pivot table where each unique value in <code>col1</code> has its own column and each unique value in <code>col2</code> has its own row.
Count or aggregate values from a third column, collect with some function. Default <code>vals</code>and <code>collect</code> return
counts in cells.</td>
</tr>
<tr>
<td><code>tblA.join(colA, tblB, colB)</code><br>
<code>tblA.join(colA, tblB)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/07/4/joining-tables-by-columns.html">7.4</a></td>
<td>Generate a table with the columns of tblA and tblB, containing rows for all values of a column that appear in both
tables. Default <code>colB</code> is <code>colA</code>. <code>colA</code> and <code>colB</code>must be strings specifying column names.</td>
</tr>
<tr>
<td>
<code>tbl.sample(n)</code><br>
<code>tbl.sample(n, with_replacement)</code>
</td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/09/empirical-distributions.html">9</a></td>
<td>A new table where <code>n</code> rows are randomly sampled from the original table. Default is with replacement. For sampling
without replacement, use argument <code>with_replacement=False</code>. For a non-uniform sample, provide a third argument
<code>weights=distribution</code> where <code>distribution</code> is an array or list containing the probability of each row.</td>
</tr>
<tr>
<td><code>proportions_from_distribution(tbl, prop_col, n)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/10/1/jury-selection.html">10.1</a></td>
<td>Returns a copy of <code>tbl</code> with an additional column <code> Random Sample </code> containing the proportions of a <code>n</code>-sized random sample, drawn using the proportions in <code>prop_col</code>.</td>
</tr>
</tbody>
</table>
<p><br /></p>
<h3>Array Functions and Methods</h3>
<table>
<colgroup>
<col width="360"/>
<col width="80"/>
<col width="1130"/>
</colgroup>
<tbody>
</tbody>
<thead>
<tr>
<th>Example Function Call</th>
<th align="center">Chapter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>max(array)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/03/4/call-expressions.html">3.3</a></td>
<td>Returns the maximum value of an array.</td>
</tr>
<tr>
<td><code>min(array)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/03/4/call-expressions.html">3.3</a></td>
<td>Returns the minimum value of an array.</td>
</tr>
<tr>
<td><code>sum(array)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/03/4/call-expressions.html">3.3</a></td>
<td>Returns the sum of the values in an array.</td>
</tr>
<tr>
<td><code>abs(num)</code>, <code>np.abs(array)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/03/4/call-expressions.html">3.3</a></td>
<td>Take the absolute value of number or each number in an array.</td>
</tr>
<tr>
<td><code>round(num)</code>, <code>np.round(array)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/03/4/call-expressions.html">3.3</a></td>
<td>Round number or array of numbers to the nearest integer.</td>
</tr>
<tr>
<td><code>len(array)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/03/4/call-expressions.html">3.3</a></td>
<td>Returns the length (number of elements) of an array.</td>
</tr>
<tr>
<td><code>make_array(val1, val2, ...)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/04/4/arrays.html">4.4</a></td>
<td>Makes a numpy array with the values passed in. Values must be the same data type.</td>
</tr>
<tr>
<td><code>np.average(array), np.mean(array)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/04/4/arrays.html">4.4</a></td>
<td>Returns the average of the values in an array.</td>
</tr>
<tr>
<td><code>np.diff(array)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/04/4/arrays.html">4.4</a></td>
<td>Returns a new array of size <code>len(array)-1</code> with elements equal to the difference between adjacent elements; val_2 - val_1, val_3 - val_2, etc.</td>
</tr>
<tr>
<td><code>np.sqrt(array)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/04/4/arrays.html">4.4</a></td>
<td>Returns an array with the square root of each element</td>
</tr>
<tr>
<td><code>np.arange(start, stop, step)</code><br>
<code>np.arange(start, stop)</code><br>
<code>np.arange(stop)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/04/5/ranges.html">4.5</a></td>
<td>An array of numbers starting with <code>start</code>, going up in increments of <code>step</code>, and going up to but excluding <code>stop</code>.
When <code>start</code> and/or <code>step</code> are left out, default values are used in their place. Default step is 1; default start is 0.</td>
</tr>
<tr>
<td><code>array.item(index)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/04/6/more-on-arrays.html">4.6</a></td>
<td>Returns the i-th item in an array (remember Python indices start at 0!)</td>
</tr>
<tr>
<td><code>np.random.choice(array, n)</code><br>
<code>np.random.choice(array)</code>
</td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/08/randomness.html">8</a></td>
<td>An array of items selected at random with replacement from an array. Default number of items is 1 if <code>n</code> is not specified.
</td>
</tr>
<tr>
<td><code>np.count_nonzero(array)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/08/randomness.html">8</a></td>
<td>Counts the number of non-zero (or <code>True</code>) elements in an array.</td>
</tr>
<tr>
<td><code>np.append(array, item)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/08/2/iteration.html">8.2</a></td>
<td>Returns a copy of the input array with <code>item</code> (must be the same type as the other entries in the array) appended to the end.</td>
</tr>
<tr>
<td><code>percentile(percentile, array)</code></td>
<td align="center"><a href="https://www.inferentialthinking.com/chapters/11/1/percentiles.html">11.1</a></td>
<td>Returns the item at the corresponding percentile of an array.</td>
</tr>
</tbody>
</table>
</div>
<footer id="contentinfo" class="body">
</footer><!-- /#contentinfo -->
<!-- jQuery (necessary for Bootstrap's JavaScript plugins) -->
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.4/jquery.min.js"></script>
<!-- Latest compiled and minified Bootstrap JavaScript -->
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-71728627-2', 'auto');
ga('send', 'pageview');
</script>
</body>
</html>