-
Notifications
You must be signed in to change notification settings - Fork 508
/
TemporalCrossEntropyCriterion.lua
108 lines (86 loc) · 3.73 KB
/
TemporalCrossEntropyCriterion.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
require 'nn'
local crit, parent = torch.class('nn.TemporalCrossEntropyCriterion', 'nn.Criterion')
--[[
A TemporalCrossEntropyCriterion is used for classification tasks that occur
at every point in time for a timeseries; it works for minibatches and has a
null token that allows for predictions at arbitrary timesteps to be ignored.
This allows it to be used for sequence-to-sequence tasks where each minibatch
element has a different size; just pad the targets of the shorter sequences
with null tokens.
The criterion operates on minibatches of size N, with a sequence length of T,
with C classes over which classification is performed. The sequence length T
and the minibatch size N can be different on every forward pass.
On the forward pass we take the following inputs:
- input: Tensor of shape (N, T, C) giving classification scores for all C
classes for every timestep of every sequence in the minibatch.
- target: Tensor of shape (N, T) where each element is an integer in the
range [0, C]. If target[{n, t}] == 0 then the predictions at input[{n, t}]
are ignored, and result in 0 loss and gradient; otherwise if
target[{n, t}] = c then we expect that input[{n, t, c}] is the largest
element of input[{n, t}], and compute loss and gradient in the same way as
nn.CrossEntropyCriterion.
You can control whether loss is averaged over the minibatch N and sequence
length T by setting the instance variables crit.batch_average (default true)
and crit.time_average (default false).
--]]
function crit:__init()
parent.__init(self)
-- Set up a little net to compute LogSoftMax
self.lsm = nn.Sequential()
self.lsm:add(nn.View(1, 1, -1):setNumInputDims(3))
self.lsm:add(nn.LogSoftMax())
self.lsm:add(nn.View(1, -1):setNumInputDims(2))
-- self.lsm = nn.Identity()
-- Whether to average over space and batch
self.batch_average = true
self.time_average = false
-- Intermediates
self.grad_logprobs = torch.Tensor()
self.losses = torch.Tensor()
end
function crit:clearState()
self.lsm:clearState()
self.grad_logprobs:set()
self.losses:set()
end
-- Implementation note: We compute both loss and gradient in updateOutput, and
-- just return the gradient from updateGradInput.
function crit:updateOutput(input, target)
local N, T, C = input:size(1), input:size(2), input:size(3)
assert(target:dim() == 2 and target:size(1) == N and target:size(2) == T)
self.lsm:get(1):resetSize(N * T, -1)
self.lsm:get(3):resetSize(N, T, -1)
-- For CPU tensors, target should be a LongTensor but for GPU tensors
-- it should be the same type as input ... gross.
if input:type() == 'torch.FloatTensor' or input:type() == 'torch.DoubleTensor' then
target = target:long()
end
-- Figure out which elements are null. We want to use target as an index
-- tensor for gather and scatter, so temporarily replace 0s with 1s.
local null_mask = torch.eq(target, 0)
target[null_mask] = 1
-- Forward pass: compute losses and mask out null tokens
local logprobs = self.lsm:forward(input)
self.losses:resize(N, T, 1):gather(logprobs, 3, target:view(N, T, 1)):mul(-1)
self.losses = self.losses:view(N, T)
self.losses[null_mask] = 0
-- Backward pass: Compute grad_logprobs
self.grad_logprobs:resizeAs(logprobs):zero()
self.grad_logprobs:scatter(3, target:view(N, T, 1), -1)
self.grad_logprobs[null_mask:view(N, T, 1):expand(N, T, C)] = 0
if self.batch_average then
self.losses:div(N)
self.grad_logprobs:div(N)
end
if self.time_average then
self.losses:div(T)
self.grad_logprobs:div(T)
end
self.output = self.losses:sum()
self.gradInput = self.lsm:backward(input, self.grad_logprobs)
target[null_mask] = 0
return self.output
end
function crit:updateGradInput(input, target)
return self.gradInput
end