-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
217 lines (164 loc) · 6.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import numpy as np
import argparse
import datetime
import json
import time
import torch
from data_loaders import get_loader
from logger import Logger
from calculate_metrics import PSNR, SSIM, PerceptualLoss
from monai.networks.nets import BasicUNet, UNet, AttentionUnet
def get_n_params(model):
pp=0
for p in list(model.parameters()):
nn=1
for s in list(p.size()):
nn = nn*s
pp += nn
return pp
def train(model, dataset, criterion, opt, epoch, device):
model.train()
data = iter(dataset)
metrics = {}
for it in range(len(dataset)):
imgs, trgts = next(data)
all_a, all_b = [], []
for idx in range(imgs.size(dim=0)):
img, trgt = imgs[idx, :, :, :], trgts[idx, :, :, :]
for idy in range(img.size(dim=1)):
a, b = img[:, idy, :, :], trgt[:, idy, :, :]
all_a.append(a)
all_b.append(b)
x, y = torch.stack(all_a), torch.stack(all_b)
x = x.to(device)
y = y.to(device)
y_ = model(x)
closs = criterion(y_, y)
opt.zero_grad()
closs.backward()
opt.step()
if "loss" in metrics:
metrics["loss"].append(closs.item())
else:
metrics["loss"] = [closs.item()]
log = f"Epoch {epoch+1}, Iter {it+1}/{len(dataset)}:"
for m in sorted(metrics.keys()):
log += f" {m} = {np.mean(metrics[m])}"
print(log)
return metrics
def val_test(foldnum, totalepochs, modelname, model, dataset, criterion, criterion_mse, epoch, device, mode="val"):
model.eval()
data = iter(dataset)
metrics = {}
ssim_loss = SSIM(window_size=16)
with torch.no_grad():
for it in range(len(dataset)):
imgs, trgts = next(data)
all_a, all_b = [], []
for idx in range(imgs.size(dim=0)):
img, trgt = imgs[idx, :, :, :], trgts[idx, :, :, :]
for idy in range(img.size(dim=1)):
a, b = img[:, idy, :, :], trgt[:, idy, :, :]
all_a.append(a)
all_b.append(b)
x, y = torch.stack(all_a), torch.stack(all_b)
x = x.to(device)
y = y.to(device)
y_ = model(x)
closs = criterion(y_, y)
# content_loss, style_loss = criterion(y_, y)
# print(content_loss, style_loss)
data_range = (torch.max(y) - torch.min(y)).item()
psnr_val = PSNR(y, y_, criterion_mse, data_range).item()
ssim = ssim_loss(y, y_).item()
if "loss" in metrics:
metrics["loss"].append(closs.item())
else:
metrics["loss"] = [closs.item()]
if "psnr" in metrics:
metrics["psnr"].append(psnr_val)
else:
metrics["psnr"] = [psnr_val]
if "ssim" in metrics:
metrics["ssim"].append(ssim)
else:
metrics["ssim"] = [ssim]
log = f"Testing on {mode.upper()} Dataset at Epoch {epoch+1}:"
log += f" loss = {np.mean(metrics['loss'])}"
log += f" PSNR = {np.mean(metrics['psnr'])}"
log += f" SSIM = {np.mean(metrics['ssim'])}"
print(log)
return metrics
def main():
parser = argparse.ArgumentParser(description='RIED 2D translation')
parser.add_argument('-d', '--dataset', default='fold1', type=str)
parser.add_argument('--epochs', default=100, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--batch_size', default=3, type=int, metavar='N',
help='number of samples in each batch')
parser.add_argument('--model_name', default="unet", type=str,
help='name of the classification model')
parser.add_argument('--num_classes', default=1, type=int, metavar='N',
help='number of classes to predict')
args = parser.parse_args()
timestamp = datetime.datetime.now().strftime("%m%d%y%H%M%S")
training_folder = f"/data/amciilab/jay/2dtranslation/{args.dataset}_{args.model_name}_{timestamp}"
if not os.path.exists(training_folder):
os.makedirs(training_folder)
os.makedirs(f"{training_folder}/weights")
else:
print(f"{training_folder} exists!")
exit()
with open(f'{training_folder}/params.json', 'w') as f:
json.dump(args.__dict__, f, indent=4)
logger = Logger(f'{training_folder}/logs')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if args.model_name == "unet":
model = BasicUNet(
spatial_dims=2,
features=(16, 32, 64, 128, 256, 32),
in_channels=1,
out_channels=1,
).to(device)
elif args.model_name == "resunet":
model = UNet(
spatial_dims=2,
in_channels=1,
out_channels=1,
channels=(16, 32, 64, 128, 256),
strides=(2, 2, 2, 2),
num_res_units=4,
).to(device)
elif args.model_name == "attunet":
model = AttentionUnet(
spatial_dims=2,
in_channels=1,
out_channels=1,
channels=(16, 32, 64, 128, 256),
strides=(2, 2, 2, 2),
).to(device)
else:
print(f"Invalid model name: {args.model_name}!")
exit()
print(args)
print("Model param:", get_n_params(model))
print("Working on ", args.dataset)
dataset_train = get_loader(f'./{args.dataset}/train', batch_size=args.batch_size, mode="train")
dataset_val = get_loader(f'./{args.dataset}/val', batch_size=1, mode="val")
torch.backends.cudnn.benchmark = True
opt = torch.optim.AdamW(model.parameters(), lr=1e-4, weight_decay=1e-5)
criterion = torch.nn.L1Loss()
criterion_mse = torch.nn.MSELoss()
for e in range(args.epochs):
loss_metrics = train(model, dataset_train, criterion, opt, e, device)
for tag, value in loss_metrics.items():
for cnt in range(len(value)):
logger.scalar_summary("train/"+tag, value[cnt], e * len(loss_metrics["loss"]) + cnt + 1)
mpath = os.path.join(f"{training_folder}/weights", '{}.ckpt'.format(e+1))
torch.save(model.state_dict(), mpath)
val_loss_metrics = val_test(args.dataset, args.epochs, args.model_name, model, dataset_val, criterion, criterion_mse, e, device)
for tag, value in val_loss_metrics.items():
logger.scalar_summary("val/"+tag, np.mean(value), (e+1))
if __name__ == '__main__':
main()