Skip to content

Latest commit

 

History

History
331 lines (274 loc) · 8.41 KB

File metadata and controls

331 lines (274 loc) · 8.41 KB

Results of GPT-3.5 on HumanEval/127

Date: 18 July, 2023
Model: gpt-3.5-turbo
Temperature: 0.2
Passing runs: 1
Total runs: 10
Success rate: 10%

Prompt

Tokens: 280

def intersection(interval1, interval2):
    """You are given two intervals,
    where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
    The given intervals are closed which means that the interval (start, end)
    includes both start and end.
    For each given interval, it is assumed that its start is less or equal its end.
    Your task is to determine whether the length of intersection of these two 
    intervals is a prime number.
    Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
    which its length is 1, which not a prime number.
    If the length of the intersection is a prime number, return "YES",
    otherwise, return "NO".
    If the two intervals don't intersect, return "NO".


    [input/output] samples:
    intersection((1, 2), (2, 3)) ==> "NO"
    intersection((-1, 1), (0, 4)) ==> "NO"
    intersection((-3, -1), (-5, 5)) ==> "YES"
    """

The above is an incomplete Python code fragment. Return the complete and correct code with no additional text.

Correct solution

def intersection(interval1, interval2):
    """You are given two intervals,
    where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
    The given intervals are closed which means that the interval (start, end)
    includes both start and end.
    For each given interval, it is assumed that its start is less or equal its end.
    Your task is to determine whether the length of intersection of these two 
    intervals is a prime number.
    Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
    which its length is 1, which not a prime number.
    If the length of the intersection is a prime number, return "YES",
    otherwise, return "NO".
    If the two intervals don't intersect, return "NO".


    [input/output] samples:
    intersection((1, 2), (2, 3)) ==> "NO"
    intersection((-1, 1), (0, 4)) ==> "NO"
    intersection((-3, -1), (-5, 5)) ==> "YES"
    """def is_prime(num):
        if num == 1 or num == 0:
            return False
        if num == 2:
            return True
        for i in range(2, num):
            if num%i == 0:
                return False
        return True

    l = max(interval1[0], interval2[0])
    r = min(interval1[1], interval2[1])
    length = r - l
    if length > 0 and is_prime(length):
        return "YES"
    return "NO"

Unit tests

def check(candidate):

    # Check some simple cases
    assert candidate((1, 2), (2, 3)) == "NO"
    assert candidate((-1, 1), (0, 4)) == "NO"
    assert candidate((-3, -1), (-5, 5)) == "YES"
    assert candidate((-2, 2), (-4, 0)) == "YES"

    # Check some edge cases that are easy to work out by hand.
    assert candidate((-11, 2), (-1, -1)) == "NO"
    assert candidate((1, 2), (3, 5)) == "NO"
    assert candidate((1, 2), (1, 2)) == "NO"
    assert candidate((-2, -2), (-3, -2)) == "NO"

Runs

❌ Run 1

Start time: 2023-07-18 17:07:17
Duration: 4.63s
Completion tokens: 115
Result: Fail

def intersection(interval1, interval2):
    start = max(interval1[0], interval2[0])
    end = min(interval1[1], interval2[1])
    
    if start > end:
        return "NO"
    
    length = end - start + 1
    
    if length <= 1:
        return "NO"
    
    for i in range(2, int(length ** 0.5) + 1):
        if length % i == 0:
            return "NO"
    
    return "YES"

❌ Run 2

Start time: 2023-07-18 17:07:12
Duration: 4.45s
Completion tokens: 115
Result: Fail

def intersection(interval1, interval2):
    start = max(interval1[0], interval2[0])
    end = min(interval1[1], interval2[1])
    
    if start > end:
        return "NO"
    
    length = end - start + 1
    
    if length <= 1:
        return "NO"
    
    for i in range(2, int(length ** 0.5) + 1):
        if length % i == 0:
            return "NO"
    
    return "YES"

❌ Run 3

Start time: 2023-07-18 17:07:07
Duration: 5.62s
Completion tokens: 138
Result: Fail

def intersection(interval1, interval2):
    start1, end1 = interval1
    start2, end2 = interval2
    
    intersection_start = max(start1, start2)
    intersection_end = min(end1, end2)
    
    if intersection_start > intersection_end:
        return "NO"
    
    intersection_length = intersection_end - intersection_start + 1
    
    if intersection_length <= 1:
        return "NO"
    
    for i in range(2, int(intersection_length ** 0.5) + 1):
        if intersection_length % i == 0:
            return "NO"
    
    return "YES"

❌ Run 4

Start time: 2023-07-18 17:07:01
Duration: 5.72s
Completion tokens: 144
Result: Fail

def intersection(interval1, interval2):
    start1, end1 = interval1
    start2, end2 = interval2
    
    if start1 > end2 or start2 > end1:
        return "NO"
    
    intersection_start = max(start1, start2)
    intersection_end = min(end1, end2)
    
    intersection_length = intersection_end - intersection_start + 1
    
    if intersection_length <= 1:
        return "NO"
    
    for i in range(2, int(intersection_length ** 0.5) + 1):
        if intersection_length % i == 0:
            return "NO"
    
    return "YES"

❌ Run 5

Start time: 2023-07-18 17:06:56
Duration: 5.11s
Completion tokens: 115
Result: Fail

def intersection(interval1, interval2):
    start = max(interval1[0], interval2[0])
    end = min(interval1[1], interval2[1])
    
    if start > end:
        return "NO"
    
    length = end - start + 1
    
    if length <= 1:
        return "NO"
    
    for i in range(2, int(length ** 0.5) + 1):
        if length % i == 0:
            return "NO"
    
    return "YES"

❌ Run 6

Start time: 2023-07-18 17:06:51
Duration: 4.3s
Completion tokens: 112
Result: Fail

def intersection(interval1, interval2):
    start = max(interval1[0], interval2[0])
    end = min(interval1[1], interval2[1])
    
    if start > end:
        return "NO"
    
    length = end - start + 1
    
    if length < 2:
        return "NO"
    
    for i in range(2, int(length ** 0.5) + 1):
        if length % i == 0:
            return "NO"
    
    return "YES"

❌ Run 7

Start time: 2023-07-18 17:06:47
Duration: 4.61s
Completion tokens: 115
Result: Fail

def intersection(interval1, interval2):
    start = max(interval1[0], interval2[0])
    end = min(interval1[1], interval2[1])
    
    if start > end:
        return "NO"
    
    length = end - start + 1
    
    if length <= 1:
        return "NO"
    
    for i in range(2, int(length ** 0.5) + 1):
        if length % i == 0:
            return "NO"
    
    return "YES"

❌ Run 8

Start time: 2023-07-18 17:06:42
Duration: 4.49s
Completion tokens: 115
Result: Fail

def intersection(interval1, interval2):
    start = max(interval1[0], interval2[0])
    end = min(interval1[1], interval2[1])
    
    if start > end:
        return "NO"
    
    length = end - start + 1
    
    if length <= 1:
        return "NO"
    
    for i in range(2, int(length ** 0.5) + 1):
        if length % i == 0:
            return "NO"
    
    return "YES"

❌ Run 9

Start time: 2023-07-18 17:06:38
Duration: 4.06s
Completion tokens: 100
Result: Fail

def intersection(interval1, interval2):
    start = max(interval1[0], interval2[0])
    end = min(interval1[1], interval2[1])
    length = end - start + 1

    if length <= 1:
        return "NO"

    for i in range(2, int(length ** 0.5) + 1):
        if length % i == 0:
            return "NO"

    return "YES"

✅ Run 10

Start time: 2023-07-18 17:06:33
Duration: 5.47s
Completion tokens: 140
Result: Pass

def intersection(interval1, interval2):
    start1, end1 = interval1
    start2, end2 = interval2
    
    if end1 < start2 or end2 < start1:
        return "NO"
    
    intersection_start = max(start1, start2)
    intersection_end = min(end1, end2)
    intersection_length = intersection_end - intersection_start
    
    if intersection_length <= 1:
        return "NO"
    
    for i in range(2, int(intersection_length ** 0.5) + 1):
        if intersection_length % i == 0:
            return "NO"
    
    return "YES"