-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
40 lines (32 loc) · 793 Bytes
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import numpy as np
import pickle
import pandas as pd
# visualization
import matplotlib.pyplot as plt
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
# from sklearn.cluster import KMeans
from sklearn.cluster import KMeans
from kmeansmodel import model
model
import kmeans
import streamlit as st
# #
# pickle_in = open("segmenter.pkl", 'rb')
# updated_kmeans_model = pickle.load(pickle_in)
print(customers)
# def cluster_groups():
# cluster = KMeans(n_clusters=3)
# fit = cluster.fit_predict(customers.iloc[:, 3:])
# print(fit)
# print(cluster_groups())
# def main():
# st.title("Customer Segmenter")
#
# clusters = st.text_input("Clusters")
# cluster_groups()
#
#
# if __name__ == '__main__':
# main()