-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsimulation.py
218 lines (154 loc) · 7.75 KB
/
simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
import time
from graph.util import make_edge
from util.random_graph import generate_labeled_graph
from algorithms.fsm.incremental.exact_counting import IncrementalExactCountingAlgorithm
from algorithms.fsm.incremental.naive_reservoir import IncrementalNaiveReservoirAlgorithm
from algorithms.fsm.incremental.optimized_reservoir import IncerementalOptimizedReservoirAlgorithm
def generate_micro_labeled_graph():
G = nx.Graph()
G.add_node(1, label=1)
G.add_node(2, label=1)
G.add_node(3, label=2)
G.add_node(4, label=2)
G.add_node(5, label=1)
G.add_edge(1, 3, label=2)
G.add_edge(2, 3, label=2)
G.add_edge(3, 4, label=1)
G.add_edge(3, 5, label=1)
G.add_edge(4, 5, label=2)
return G
def run_simulation(simulator, graph):
# get list of edges
# permutate list of edges
# add edges one by one
# update k-vertex subgraph frequencies after each addition
data = []
for u, v, edge_label in graph.edges.data('label'):
u_label = graph.nodes[u]['label']
v_label = graph.nodes[v]['label']
data.append(make_edge(u, u_label, v, v_label, edge_label))
np.random.shuffle(data)
start_time = time.time()
for i, edge in enumerate(data):
simulator.add_edge(edge)
end_time = time.time()
return end_time - start_time
def main():
np.random.seed(42)
k = 3
N = 70
p = 0.25
L_count = 2 # vertex labels
Q_count = 2 # edge labels
#graph = generate_micro_labeled_graph()
graph = generate_labeled_graph(N, p, L_count, Q_count)
print("\nEXACT COUNTING\n")
ec_sim_durations = []
ec_edge_add_durations = []
for i in range(10):
sim = IncrementalExactCountingAlgorithm(k=k)
duration = run_simulation(sim, graph)
print("The simulation ran for", duration, "seconds.")
print("Number of different patterns in sample:", len((+sim.patterns).keys()))
print("Total number of subgraphs in sample:", sum((+sim.patterns).values()))
ec_sim_durations.append(duration)
ec_edge_add_durations.append(sim.metrics['edge_add_ms'])
print("The simulations ran for on avg.", np.mean(ec_sim_durations), "seconds.")
print("\nNAIVE RESERVOIR SAMPLING\n")
nrs_sim_durations = []
nrs_edge_add_durations = []
nrs_a_durations = []
nrs_r_durations = []
nrs_n_subgraphs = []
nrs_i_subgraphs = []
nrs_reservoir_full = []
for i in range(10):
sim = IncrementalNaiveReservoirAlgorithm(k=k, M=1529) #324938
duration = run_simulation(sim, graph)
print("The simulation ran for", duration, "seconds.")
print("Number of different patterns in sample:", len((+sim.patterns).keys()))
print("Total number of subgraphs in sample:", sum((+sim.patterns).values()))
nrs_sim_durations.append(duration)
nrs_edge_add_durations.append(sim.metrics['edge_add_ms'])
nrs_a_durations.append(sim.metrics['subgraph_add_ms'])
nrs_r_durations.append(sim.metrics['subgraph_replace_ms'])
nrs_n_subgraphs.append(sim.metrics['new_subgraph_count'])
nrs_i_subgraphs.append(sim.metrics['included_subgraph_count'])
nrs_reservoir_full.append(sim.metrics['reservoir_full_bool'])
print("The simulations ran for on avg.", np.mean(nrs_sim_durations), "seconds.")
print("\nOPTIMIZED RESERVOIR SAMPLING\n")
ors_sim_durations = []
ors_edge_add_durations = []
ors_a_durations = []
ors_r_durations = []
ors_n_subgraphs = []
ors_i_subgraphs = []
ors_reservoir_full = []
ors_skip_thresh = []
for i in range(10):
sim = IncerementalOptimizedReservoirAlgorithm(k=k, M=1529) #324938
duration = run_simulation(sim, graph)
print("The simulation ran for", duration, "seconds.")
print("Number of different patterns in sample:", len((+sim.patterns).keys()))
print("Total number of subgraphs in sample:", sum((+sim.patterns).values()))
ors_sim_durations.append(duration)
ors_edge_add_durations.append(sim.metrics['edge_add_ms'])
ors_a_durations.append(sim.metrics['subgraph_add_ms'])
ors_r_durations.append(sim.metrics['subgraph_replace_ms'])
ors_n_subgraphs.append(sim.metrics['new_subgraph_count'])
ors_i_subgraphs.append(sim.metrics['included_subgraph_count'])
ors_reservoir_full.append(sim.metrics['reservoir_full_bool'])
ors_skip_thresh.append(sim.metrics['skiprs_treshold_bool'])
print("\nThe simulations ran for on avg.", np.mean(ors_sim_durations), "seconds.")
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(np.arange(len(ec_edge_add_durations[0])), np.mean(np.asarray(ec_edge_add_durations), axis=0), label="ec")
ax.plot(np.arange(len(nrs_edge_add_durations[0])), np.mean(np.asarray(nrs_edge_add_durations), axis=0), label="naive rs")
ax.plot(np.arange(len(ors_edge_add_durations[0])), np.mean(np.asarray(ors_edge_add_durations), axis=0), label="optimized rs")
plt.title("edge addition durations, k="+str(k))
plt.show()
nrs_reservoir_full_at = np.count_nonzero(np.mean(np.asarray(nrs_reservoir_full), axis=0) < 0.2)
fig = plt.figure()
ax = fig.add_subplot(311)
#ax.plot(np.arange(len(ec_edge_add_durations[0])), np.mean(np.asarray(ec_edge_add_durations), axis=0))
ax.plot(np.arange(len(nrs_edge_add_durations[0])), np.mean(np.asarray(nrs_edge_add_durations), axis=0))
ax.axvline(nrs_reservoir_full_at, color='r', alpha=0.6)
plt.title("edge addition duration")
#ax.plot(np.arange(len(nrs_edge_add_durations[0])), np.mean(np.asarray(ors_edge_add_durations), axis=0))
ax = fig.add_subplot(312)
ax.stackplot(np.arange(len(nrs_edge_add_durations[0])), np.mean(np.asarray(nrs_a_durations), axis=0), np.mean(np.asarray(nrs_r_durations), axis=0), labels=['addition', 'replacement'])
ax.axvline(nrs_reservoir_full_at, color='r', alpha=0.6)
plt.title("subgraph add and replacement durations")
plt.legend()
ax = fig.add_subplot(313)
ax.plot(np.arange(len(nrs_edge_add_durations[0])), np.mean(np.asarray(nrs_i_subgraphs), axis=0) / np.mean(np.asarray(nrs_n_subgraphs), axis=0))
ax.axvline(nrs_reservoir_full_at, color='r', alpha=0.6)
plt.title("ratio of included subgraphs")
fig.suptitle('Incremental Stream, Naive Reservoir Sampling, k='+str(k), fontsize=16)
plt.show()
ors_reservoir_full_at = np.count_nonzero(np.mean(np.asarray(ors_reservoir_full), axis=0) < 0.2)
ors_threshold_reached_at = np.count_nonzero(np.mean(np.asarray(ors_skip_thresh), axis=0) < 0.2)
fig = plt.figure()
ax = fig.add_subplot(311)
ax.plot(np.arange(len(ors_edge_add_durations[0])), np.mean(np.asarray(ors_edge_add_durations), axis=0))
ax.axvline(ors_reservoir_full_at, color='r', alpha=0.6)
ax.axvline(ors_threshold_reached_at, color='g', alpha=0.6)
plt.title("edge addition duration")
ax = fig.add_subplot(312)
ax.stackplot(np.arange(len(ors_edge_add_durations[0])), np.mean(np.asarray(ors_a_durations), axis=0), np.mean(np.asarray(ors_r_durations), axis=0), labels=['addition', 'replacement'])
ax.axvline(ors_reservoir_full_at, color='r', alpha=0.6)
ax.axvline(ors_threshold_reached_at, color='g', alpha=0.6)
plt.title("subgraph add and replacement durations")
plt.legend()
ax = fig.add_subplot(313)
ax.plot(np.arange(len(ors_edge_add_durations[0])), np.mean(np.asarray(ors_i_subgraphs), axis=0) / np.mean(np.asarray(ors_n_subgraphs), axis=0))
ax.axvline(ors_reservoir_full_at, color='r', alpha=0.6)
ax.axvline(ors_threshold_reached_at, color='g', alpha=0.6)
plt.title("ratio of included subgraphs")
fig.suptitle('Incremental Stream, Optimized Reservoir Sampling, k='+str(k), fontsize=16)
plt.show()
if __name__ == '__main__':
main()