-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmedian_scaling.py
279 lines (214 loc) · 11.2 KB
/
median_scaling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
"""
This file does median scaling to precompute full median scaling of the entire dataset.
"""
import os
import cv2
import yaml
import json
import torch # Sorry to the google supervisors
import shutil
import numpy as np
from tqdm import tqdm
import torch.nn.functional as F
import matplotlib.pyplot as plt
from collections import OrderedDict
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
from torchviz import make_dot, make_dot_from_trace
# Imports from our files
from loss.losses import *
from utils.training_utils import *
from utils.arguments import arguments
from depth_estimation.networks import *
from utils.modify_images import corrupt_rgbd
from slam.custom_slam import image_recover_slam
from utils.yaml_configs import load_yaml, save_yaml
from utils.advanced_vis import plotly_map_update_visualization
from depth_estimation.view_synthesis import BackprojectDepth, Project3D
# GradSLAM Imports
import gradslam as gs
from gradslam.datasets import ICL, TUM
from gradslam.slam import ICPSLAM
from gradslam.slam import PointFusion
from chamferdist import ChamferDistance
from gradslam import Pointclouds, RGBDImages
class Depth_Estimation:
def __init__(self, arguments):
self.args = arguments
self.device = torch.device("cuda" if self.args.SETTINGS.device == "cuda" else "cpu")
self.sequence_length = len(self.args.DATA.frames)
self.color_map = plt.cm.get_cmap("magma").reversed()
# self.writer = SummaryWriter()
self.dataset_init()
self.model_init()
if self.args.ABLATION.scale_intrinsics:
print("Scaling Intrinsics")
if self.args.ABLATION.scaled_depth:
print("Scaling Depth Maps")
def dataset_init(self):
"""
Initialize datasets in this function
Input:
None
Output:
None
"""
print("Loading Images of Size {} x {}".format(self.args.DATA.width, self.args.DATA.height))
self.data_path = os.path.join(self.args.DATA.data_path, self.args.DATA.name)
if self.args.DATA.name == "ICL":
self.dataset = ICL(basedir=self.data_path,
seqlen=self.sequence_length,
height=self.args.DATA.height,
width=self.args.DATA.width,
dilation=self.args.DATA.dilation,
stride=self.args.DATA.stride,
start=self.args.DATA.start)
elif self.args.DATA.name == "TUM":
self.dataset = TUM(basedir=self.data_path,
seqlen=self.sequence_length,
height=self.args.DATA.height,
width=self.args.DATA.width,
dilation=self.args.DATA.dilation,
stride=self.args.DATA.stride,
start=self.args.DATA.start)
self.train_loader = DataLoader(dataset=self.dataset,
batch_size=self.args.OPTIMIZATION.batch_size,
shuffle=False,
num_workers=self.args.SETTINGS.num_workers,
pin_memory=True,
drop_last=True)
print("{} Dataset Loaded".format(self.args.DATA.name))
def model_init(self):
"""
Define all training models in here
Variables To Consider:
models: contains the list of all models
train_params: contains the trainable params
"""
self.models = {}
self.train_params = []
print("Initializing Models")
"Resnet Encoder"
if self.args.MODEL.depth_network == "monodepth2":
self.models["depth_encoder"] = ResnetEncoder(self.args.MODEL.num_layers,
self.args.MODEL.weights_init_encoder == "imagenet")
self.models["depth_encoder"].to(self.device)
self.train_params += list(self.models["depth_encoder"].parameters())
"Depth Decoder"
self.models["depth_decoder"] = DepthDecoder(self.models["depth_encoder"].num_ch_enc,
self.args.DATA.scales)
self.models["depth_decoder"].to(self.device)
print("Loaded ResNet{} based depth network".format(self.args.MODEL.num_layers))
self.train_params += list(self.models["depth_decoder"].parameters())
elif self.args.MODEL.depth_network == "indoor":
self.models["depth"] = DispResNet_Indoor(num_layers=self.args.MODEL.num_layers,
pretrained=self.args.MODEL.weights_init_encoder == "imagenet")
self.train_params += list(self.models["depth"].parameters())
self.models["depth"].to(self.device)
else:
raise ValueError("Given {} is not a valid depth network option".format(self.args.MODEL.depth_network))
if self.args.MODEL.use_pretrained_models and self.args.MODEL.depth_network == "monodepth2":
self.load_model()
elif self.args.MODEL.use_pretrained_models and self.args.MODEL.depth_network == "indoor":
self.load_model_indoor()
def find_median_scale(self):
"""
Main Training Loop
"""
self.epoch = 0
self.step = 0
print("Computing Median Scale for {} dataset".format(self.args.DATA.name))
self.median_scale = []
"Initialize a small sequence, "
for iter, batch in enumerate(self.train_loader):
colors, gt_depths, intrinsics, poses = batch[0], batch[1], batch[2], batch[3]
colors /= 255.0
colors, gt_depths, intrinsics, poses = colors.to(self.device), \
gt_depths.to(self.device), \
intrinsics.to(self.device), \
poses.to(self.device)
scale = 0 # Only using 1 scale for now. kinda redundent for now (remove usage if not needed)
self.initial_depths = {}
inputs = OrderedDict()
encoder_features = []
depth_tensor = []
for index in range(self.sequence_length):
if self.args.MODEL.depth_network == "monodepth2":
encoder_features.append(self.models["depth_encoder"](colors[:, index, ...]))
inputs.update(self.models["depth_decoder"](encoder_features[index], index))
# Convert Disparity into Depth
inputs[("depth", index, scale)] = convert_disp_to_depth(inputs[("disp", index, scale)],
self.args.DATA.min_depth,
self.args.DATA.max_depth)
if self.args.ABLATION.scale_intrinsics:
focal_data = intrinsics[0, 0, 0, 0]
focal_pretrain = self.args.ABLATION.focal_pretrain
inputs[("depth", index, scale)] = scale_by_f(focal_data=focal_data,
focal_pretrain=focal_pretrain,
depth=inputs[("depth", index, scale)])
if self.args.ABLATION.scaled_depth:
inputs[("depth", index, scale)] *= self.args.ABLATION.scaling_depth
depth_tensor.append(
inputs[("depth", index, scale)].unsqueeze(1)) # Unsqueeze to create Sequence Dimension
elif self.args.MODEL.depth_network == "indoor":
inputs.update(self.models["depth"](colors[:, index, ...], index))
inputs[("depth", index, scale)] = 1 / inputs[("disp", index, scale)]
if self.args.ABLATION.scaled_depth:
inputs[("depth", index, scale)] *= self.args.ABLATION.scaling_depth
depth_tensor.append(
inputs[("depth", index, scale)].unsqueeze(1)) # Unsqueeze to create Sequence Dimension
del encoder_features # Free Space
depth_tensor = torch.cat(depth_tensor, dim=1) # use this for SLAM!
depth_tensor = depth_tensor.permute(0, 1, 3, 4, 2) # Change to channel last representation
ratio = torch.median(gt_depths) / torch.median(depth_tensor)
self.median_scale.append(ratio.cpu().detach().numpy())
print("Iter:", iter, "ratio:", ratio)
self.median_scale = np.median(np.array(self.median_scale))
print("Median Scale is:", self.median_scale)
def load_model(self):
"""
Load pretrained models from disk.
Variables To Consider:
self.models: Contains List of All Trainable Models.
Flags To Consider:
MODEL.load_depth_path: Path to pretrained models and their optimizers for resume training
MODEL.pretrained_models_list: List of models to load
"""
self.args.MODEL.load_depth_path = os.path.expanduser(self.args.MODEL.load_depth_path)
assert os.path.isdir(self.args.MODEL.load_depth_path), "Cannot find folder {}".format(
self.args.MODEL.load_depth_path)
print("loading model from folder {}".format(self.args.MODEL.load_depth_path))
for n in self.args.MODEL.pretrained_models_list:
print("Loading {} weights...".format(n))
path = os.path.join(self.args.MODEL.load_depth_path, "{}.pth".format(n))
model_dict = self.models[n].state_dict()
pretrained_dict = torch.load(path)
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
self.models[n].load_state_dict(model_dict)
def load_model_indoor(self):
"""
Load pretrained models from disk.
Variables To Consider:
self.models: Contains List of All Trainable Models.
Flags To Consider:
MODEL.load_depth_path: Path to pretrained models and their optimizers for resume training
MODEL.pretrained_models_list: List of models to load
"""
self.args.MODEL.load_depth_path = os.path.expanduser(self.args.MODEL.load_depth_path)
assert os.path.isdir(self.args.MODEL.load_depth_path), "Cannot find folder {}".format(
self.args.MODEL.load_depth_path)
print("loading model from folder {}".format(self.args.MODEL.load_depth_path))
n = "depth"
print("Loading {} weights...".format(n))
path = os.path.join(self.args.MODEL.load_depth_path, "{}.pth.tar".format(n))
pretrained_dict = torch.load(path)
self.models[n].load_state_dict(pretrained_dict["state_dict"])
print("Loaded Indoor Depth Model")
if __name__ == "__main__":
args = arguments()
config_path = args['config_path']
config_dict = load_yaml(config_path)
config_dict.SETTINGS.name = args['name']
SLAM = Depth_Estimation(config_dict)
SLAM.find_median_scale()