forked from RBenita/DIFFAR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
audio.py
292 lines (250 loc) · 13.1 KB
/
audio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import random
import os
import sys
import json
from pathlib import Path
import logging
import textgrid
import torch
import torchaudio
import math
import numpy as np
torchaudio.set_audio_backend("sox_io")
from learner import logger
REPRESENT_LENGTH = 128
TOTAL_AVAILABLE_PHONEMES = 72
phoneme_to_index_dict = { "" : 1, "AA0": 2, 'AA1': 3, 'AA2': 4, 'AE0': 5 ,'AE1': 6
,'AE2': 7 ,'AH0': 8 ,'AH1': 9 ,'AH2': 10 ,'AO0': 11 ,'AO1': 12 ,'AO2': 13 ,'AW0': 14 ,'AW1': 15
,'AW2': 16 ,'AY0': 17 ,'AY1': 18 ,'AY2': 19,'B': 20 ,'CH': 21, 'D' : 22, 'DH' :23,
'EH0':24, 'EH1':25, 'EH2':26 ,'ER0':27, 'ER1':28,'ER2':29 ,'EY0':30 , 'EY1':31 ,'EY2':32 ,'F':33 ,
'G':34 ,'HH':35 ,'IH0':36 ,'IH1':37 ,'IH2':38 ,'IY0':39, 'IY1':40 , 'IY2':41 , 'JH':42,
'K':43, 'L':44, 'M':45, 'N':46 , 'NG':47, 'OW0':48, 'OW1':49, 'OW2':50,'OY0':51, 'OY1':52,
'OY2':53, 'P':54, 'R':55, 'S':56, 'SH':57, 'T':58, 'TH':59, 'UH0':60, 'UH1':61,
'UH2':62, 'UW0':63, 'UW1':64, 'UW2':65, 'V':66, 'W':67, 'Y':68, 'Z':69, 'ZH':70, 'spn':71, 'sil':72
}
##TODO##
def find_TextGrid_files(path, exts=[".textgrid"], progress=True):
"""
dump all files in the given path to a json file with the format:
[(file_path),...]
"""
audio_files = []
for root, folders, files in os.walk(path, followlinks=True):
for file in files:
file = Path(root) / file
if file.suffix.lower() in exts:
audio_files.append(str(file.resolve()))
meta = []
for idx, file in enumerate(audio_files):
meta.append((file))
if progress:
print(format((1 + idx) / len(audio_files), " 3.1%"), end='\r', file=sys.stderr)
meta.sort()
return meta
##TODO##
def find_audio_files(path, exts=[".wav"], progress=True):
"""
dump all files in the given path to a json file with the format:
[(audio_path, audio_length),...]
"""
audio_files = []
for root, folders, files in os.walk(path, followlinks=True):
for file in files:
file = Path(root) / file
if file.suffix.lower() in exts:
audio_files.append(str(file.resolve()))
meta = []
for idx, file in enumerate(audio_files):
siginfo = torchaudio.info(file)
length = siginfo.num_frames // siginfo.num_channels
meta.append((file, length))
if progress:
print(format((1 + idx) / len(audio_files), " 3.1%"), end='\r', file=sys.stderr)
meta.sort()
return meta
def get_overlap_duration(start_p, info_taken_phonemes, window_length):
### In case of conditional synthesis, we would like to choose which phonemes
### from the last window will apeear in the current window.
### we assume that aprox 1/3 phonemes from the last window is involving in the current window
### and also assume that this part will be 1/3 phonemes from the current frame.
### the function gets the info about the phonemes on a specific window
### the function return the overlap (which part of the window is visible)
total_phonemes = len(info_taken_phonemes)
assert total_phonemes>=1, "There must be at list one phoneme in a current window"
desirable_phonemes = np.abs((-total_phonemes)//3)
assert desirable_phonemes>=1, "There must be at list one phoneme in the overlap area"
overlap_duration = info_taken_phonemes[desirable_phonemes-1].maxTime*16000 - start_p
i=2
while overlap_duration > window_length/2 and desirable_phonemes-i>=0:
overlap_duration = info_taken_phonemes[desirable_phonemes-i].maxTime*16000 - start_p
i+=1
overlap_duration = min(int(round(overlap_duration)), int(round(window_length/2)))
return overlap_duration
def sample_segment(audio, n_samples, ret_idx=False):
"""
samples a random segment of `n_samples` from `audio`.
if audio is shorter than `n_samples` then return unchanged.
audio - tensor of shape [1, T]
n_samples - int, this will be the new length of audio
ret_idx - if True then the start and end indices will be returned
"""
if audio.shape[1] > n_samples:
diff = audio.shape[1] - n_samples
start = random.randint(0, diff)
end = start + n_samples
new_audio = audio[:, start:end]
if ret_idx:
return new_audio, (start, end)
return new_audio
if ret_idx:
return audio, (0, audio.shape[1] - 1)
return audio
def build_phoneme_and_energy_representation(total_phoneme_len, phoneme_numer, cur_energy):
## represent by repeating the phoneme_number devided by the total num of the phonemes.
represent_sign = phoneme_numer / TOTAL_AVAILABLE_PHONEMES
phonemes_representaion = torch.Tensor.repeat(torch.tensor(represent_sign),math.floor(total_phoneme_len))
energy_representaion = torch.Tensor.repeat(torch.tensor(cur_energy),math.floor(total_phoneme_len))
return phonemes_representaion, energy_representaion
def Build_excisting_phonemes_sec_approach(start_frame, end_frame ,phonemes_a, Energy_a, sr):
list_taken_phonemes = []
list_info_taken_phonemes = []
conditioned_phonemes_signal = torch.empty((0))
conditioned_energy_signal = torch.empty((0))
for phoneme, cur_energy in zip(phonemes_a,Energy_a) :
start_phoneme = round(phoneme.minTime * sr)
end_phoneme = round(phoneme.maxTime * sr)
phoneme_mark = phoneme.mark
if start_phoneme >= end_frame : # --> start_frame < start_phoneme
break
elif end_phoneme <= start_frame : # --> end_frame>end_phoneme
continue
elif start_phoneme >= start_frame:
if end_phoneme<= end_frame:
total_phoneme_length = round(end_phoneme-start_phoneme)
list_taken_phonemes.append([phoneme_to_index_dict[phoneme_mark],total_phoneme_length])
list_info_taken_phonemes.append(phoneme)
cur_phoneme_representaion, cur_energy_representation = build_phoneme_and_energy_representation(total_phoneme_length,
phoneme_to_index_dict[phoneme_mark], cur_energy)
conditioned_phonemes_signal = torch.concat((conditioned_phonemes_signal,cur_phoneme_representaion))
conditioned_energy_signal = torch.concat((conditioned_energy_signal,cur_energy_representation))
continue
else: # --> end_phoneme > end_frame
total_phoneme_length = round(end_frame-start_phoneme)
list_taken_phonemes.append([phoneme_to_index_dict[phoneme_mark],total_phoneme_length])
list_info_taken_phonemes.append(phoneme)
cur_phoneme_representaion, cur_energy_representation = build_phoneme_and_energy_representation(total_phoneme_length,
phoneme_to_index_dict[phoneme_mark], cur_energy)
conditioned_phonemes_signal = torch.concat((conditioned_phonemes_signal,cur_phoneme_representaion))
conditioned_energy_signal = torch.concat((conditioned_energy_signal,cur_energy_representation))
continue
elif start_phoneme <= start_frame:
if end_phoneme >= end_frame:
total_phoneme_length = round(end_frame-start_frame)
list_taken_phonemes.append([phoneme_to_index_dict[phoneme_mark],total_phoneme_length])
list_info_taken_phonemes.append(phoneme)
cur_phoneme_representaion, cur_energy_representation = build_phoneme_and_energy_representation(total_phoneme_length,
phoneme_to_index_dict[phoneme_mark], cur_energy)
conditioned_phonemes_signal = torch.concat((conditioned_phonemes_signal,cur_phoneme_representaion))
conditioned_energy_signal = torch.concat((conditioned_energy_signal,cur_energy_representation))
continue
else: # --> ende_frame > end_phonem
total_phoneme_length = round(end_phoneme-start_frame)
list_taken_phonemes.append([phoneme_to_index_dict[phoneme_mark],total_phoneme_length])
list_info_taken_phonemes.append(phoneme)
cur_phoneme_representaion, cur_energy_representation = build_phoneme_and_energy_representation(total_phoneme_length,
phoneme_to_index_dict[phoneme_mark], cur_energy)
conditioned_phonemes_signal = torch.concat((conditioned_phonemes_signal,cur_phoneme_representaion))
conditioned_energy_signal = torch.concat((conditioned_energy_signal,cur_energy_representation))
continue
else:
assert False, "Roi you missed at least one case."
tensor_taken_phonemes = torch.tensor(list_taken_phonemes)
## The int, round, came after the run training
assert conditioned_phonemes_signal.shape[0] == int(round(end_frame-start_frame)), f"some how {conditioned_phonemes_signal.shape[0]} and {end_frame-start_frame} are different"
assert conditioned_phonemes_signal.shape[0] == conditioned_energy_signal.shape[0], f"some how {conditioned_phonemes_signal.shape[0]} and {conditioned_energy_signal.shape[0]} are different"
assert tensor_taken_phonemes.shape[0]>0 , "There are no phonemes in the phonemes tensor."
return conditioned_phonemes_signal[None,:], list_info_taken_phonemes, conditioned_energy_signal[None,:]
class TextGridDataset(torch.utils.data.Dataset):
def __init__(self, json_manifest_TextGrids):
self.files = json.load(open(json_manifest_TextGrids, "r"))
def __len__(self):
return len(self.files)
def __getitem__(self,i):
path = self.files[i]
tg = textgrid.TextGrid.fromFile(path)
return tg
class Npy_EnergyDataset(torch.utils.data.Dataset):
def __init__(self, json_manifest_npy_energy):
self.files = json.load(open(json_manifest_npy_energy, "r"))
def __len__(self):
return len(self.files)
def __getitem__(self,i):
path = self.files[i]
cur_energy = np.load(path)
return cur_energy
class AudioDataset(torch.utils.data.Dataset):
def __init__(self, json_manifest, n_samples=None, min_duration=0, max_duration=float("inf")):
if n_samples:
assert n_samples <= min_duration, "`min_duration` must be greater than `n_samples`"
self.n_samples = n_samples
# load list of files
logger.info(f"loading from: {json_manifest}")
self.files = json.load(open(json_manifest, "r"))
logger.info(f"files in manifest: {len(self.files)}")
# filter files that are with Inappropriate duration
self.files = list(filter(lambda x: min_duration <= x[1] <= max_duration, self.files))
logger.info(f"files after duration filtering: {len(self.files)}")
def __len__(self):
return len(self.files)
def __getitem__(self, i):
path, length = self.files[i]
audio, sr = torchaudio.load(path)
if self.n_samples:
audio = sample_segment(audio, self.n_samples)
return audio
class PairedAudioDataset(torch.utils.data.Dataset):
def __init__(self, json_wav, json_TextGrids, json_npy_Energy, n_samples=None, min_duration=0, max_duration=float("inf")):
if n_samples:
assert n_samples <= min_duration, "`min_duration` must be greater than `n_samples`"
self.n_samples = n_samples
self.ds_a = AudioDataset(
json_manifest=json_wav,
n_samples=None,
min_duration=min_duration,
max_duration=max_duration,
)
self.ds_b = AudioDataset(
json_manifest=json_wav,
n_samples=None,
min_duration=min_duration,
max_duration=max_duration,
)
self.ds_textgrids_a = TextGridDataset(
json_manifest_TextGrids=json_TextGrids,
)
self.ds_energy_a = Npy_EnergyDataset(
json_manifest_npy_energy = json_npy_Energy,
)
assert len(self.ds_a) == len(self.ds_b), "datasets in `PairedAudioDataset` must be of equal length"
def __len__(self):
return len(self.ds_a)
def __getitem__(self, i):
# Using the same index for iterators.
audio_a = self.ds_a[i]
audio_b = self.ds_b[i]
phonemes_a = self.ds_textgrids_a[i][1]
Energy_a = self.ds_energy_a[i]
if self.n_samples:
# sample identically for both waveforms (calling to PairedAudioDataset)
# (using n_samples != None)
audio_a, (start, end) = sample_segment(audio_a, self.n_samples, ret_idx=True)
conditioned_phonemes_signal_a, list_info_cur_taken_phonemes, conditioned_energy_signal_a = \
Build_excisting_phonemes_sec_approach(start, end ,phonemes_a,Energy_a,16000)
if self.n_samples:
###The overlap is by num of samples and not by time.
overlap_zone = int(get_overlap_duration(start, list_info_cur_taken_phonemes, 8000))
audio_b = audio_b[:, start:end]
audio_b[:,overlap_zone:]=0
return audio_a, audio_b, conditioned_phonemes_signal_a, conditioned_energy_signal_a, overlap_zone
if __name__ == "__main__":
print("audio.py")