From d00989ba53627c24b9450647a450656243c1f780 Mon Sep 17 00:00:00 2001 From: Michael Schartner Date: Thu, 11 Jan 2024 18:46:33 +0000 Subject: [PATCH 1/2] Update DLC_labeled_video.py --- dlc/DLC_labeled_video.py | 341 +++++++++++++++++++++++++++++++++------ 1 file changed, 295 insertions(+), 46 deletions(-) diff --git a/dlc/DLC_labeled_video.py b/dlc/DLC_labeled_video.py index babec53..884ebd5 100644 --- a/dlc/DLC_labeled_video.py +++ b/dlc/DLC_labeled_video.py @@ -7,6 +7,15 @@ import pandas as pd # conda install -c conda-forge pyarrow import os +from neurodsp.smooth import smooth_interpolate_savgol +from brainbox.io.one import SessionLoader +from copy import deepcopy + + +#one = ONE(base_url='https://openalyx.internationalbrainlab.org', +# password='international', silent=True) + +one = ONE() def Find(pattern, path): @@ -28,21 +37,151 @@ def find_nearest(array, value): return idx -def Viewer(eid, video_type, trial_range, save_video=True, eye_zoom=False): +def load_lp(eid, cam, masked=True, paws=True, + reso='128x102_128x128', flav='multi'): + + ''' + for a given session and cam, load all lp tracked points; + that's paw specific now; + flav is either single or multi view EKS + ''' + + print(f'loading LP, {reso}, {cam}') + print(f'{flav}, paws:{paws}, {eid}') + + if paws: + + pth = ('/mnt/8cfe1683-d974-40f3-a20b-b217cad4722a/lp_ens' + f'/{reso}/{eid}/ensembles_{cam}Camera/' + f'_iblrig_{cam}Camera.raw.paws.eks_{flav}.csv') + + d0 = pd.read_csv(pth, low_memory=False) + + + if reso[:7] == '128x102': + scale = 10 if cam == 'left' else 5 + else: + scale = 4 if cam == 'left' else 2 + + print('scale', scale) + + # concat column keys + d = {} + for k in d0: + if (d0[k][1] in ['x','y']): + d[d0[k][0]+'_'+d0[k][1]] = scale * np.array( + d0[k][2:].values, + dtype=np.float32) + else: + d[d0[k][0]+'_'+d0[k][1]] = np.array( + d0[k][2:].values, + dtype=np.float32) + + + del d['bodyparts_coords'] + +# k0 = list(d.keys()) +# for k in k0: +# if 'likelihood' in k: +# del d[k] + + + d['times'] = np.load(one.eid2path(eid) / 'alf' + / f'_ibl_leftCamera.times.npy') + + + ls = [len(d[x]) for x in d] + if not all(ls == np.mean(ls)): + lsd = {x:len(d[x]) for x in d} + print(f'length mismatch: {lsd}') + print(eid, cam) + print('cutting times') + d['times'] = d['times'][:ls[0]] + + if (not paws and reso == '128x102_128x128'): + # load old complete lp file + pth = ('/mnt/8cfe1683-d974-40f3-a20b-b217cad4722a/lp_ens' + f'/{reso}/{eid}/_ibl_{cam}Camera.lightningPose.pqt') + + d = pd.read_parquet(pth) + + if masked: + points = np.unique(['_'.join(x.split('_')[:-1]) + for x in d.keys()])[1:] + + for point in points: + cond = d[f'{point}_likelihood'] < 0.9 + d.loc[cond, [f'{point}_x', f'{point}_y']] = np.nan + + return d + + +def load_dlc(eid, cam, smoothed=False, manual=True): + + ''' + cam in left, right, body + ''' + + if manual: + pth = one.eid2path(eid) + d = pd.read_parquet(pth / 'alf' / f'_ibl_{cam}Camera.dlc.pqt') + d['times'] = np.load(one.eid2path(eid) / 'alf' + / f'_ibl_{cam}Camera.times.npy') + + ls = [len(d[x]) for x in d] + if not all(ls == np.mean(ls)): + lsd = {x:len(d[x]) for x in d} + print(f'length mismatch: {lsd}') + print(eid, cam) + print('cutting times') + d['times'] = d['times'][:ls[0]] + + else: + # load DLC + sess_loader = SessionLoader(one, eid) + sess_loader.load_pose(views=[cam]) + d = sess_loader.pose[f'{cam}Camera'] + + if smoothed: + print('smoothing dlc traces') + window = 13 if cam == 'right' else 7 + sers = [x for x in d.keys() if (x[-1] in ['x','y'])]# and 'paw' in x + for ser in sers: + d[ser] = smooth_interpolate_savgol( + d[ser].to_numpy(), + window=window,order=3, interp_kind='linear') + + return d + + + + +def Viewer(eid, video_type, frame_start, frame_stop, save_video=True, + eye_zoom=False, lp=False, ens=False, + res = '128x102_128x128', masked=True, paws_only=False, + smooth_dlc = False): + ''' eid: session id, e.g. '3663d82b-f197-4e8b-b299-7b803a155b84' video_type: one of 'left', 'right', 'body' - trial_range: first and last trial number of range to be shown, e.g. [5,7] save_video: video is saved this local folder Example usage to view and save labeled video with wheel angle: Viewer('3663d82b-f197-4e8b-b299-7b803a155b84', 'left', [5,7]) 3D example: 'cb2ad999-a6cb-42ff-bf71-1774c57e5308', [5,7] + + Different resolutions: + 128x102_128x128 + 320x256_128x128 + 320x256_256x256 + + + paws: paws only ''' save_vids_here = Path.home() - one = ONE() + alf_path = one.eid2path(eid) # Download a single video @@ -60,8 +199,58 @@ def Viewer(eid, video_type, trial_range, save_video=True, eye_zoom=False): # Download DLC traces and stamps - Times = one.load_dataset(eid,f'alf/_ibl_{video_type}Camera.times.npy') - cam = one.load_dataset(eid,f'alf/_ibl_{video_type}Camera.dlc.pqt') + Times = one.load_dataset(eid,f'alf/_ibl_{video_type}Camera.times.npy') + + + if lp and ens: + print('either lp or ens must be False') + return + + if lp: + + cam = load_lp(eid, video_type, paws=True, + reso=res, flav='multi') + + + print(cam.keys()) + + elif ens: + print('load ensembling results') + pth = Path('/mnt/8cfe1683-d974-40f3-a20b-b217cad4722a/lp_ens' + f'/{res}/{eid}/ensembles_{video_type}Camera') + + cams = [] + nets = 4 if res[:7] == '320x256' else 5 + + if res[:7] == '128x102': + scale = 10 if video_type == 'left' else 5 + else: + scale = 4 if video_type == 'left' else 2 + + for net in range(nets): + cam = {} +# try: +# df = pd.read_csv(pth / +# f'_iblrig_{video_type}Camera.raw.eye{net}.csv') +# cam = cam | {'_'.join([df[x][0],df[x][1]]): +# scale* np.array(list(map(float, df[x][2:]))) +# for x in df.keys() if df[x][1] in ['x','y','likelihood']} +# except: +# pass + + df = pd.read_csv(pth / f'_iblrig_{video_type}Camera.raw.paws{net}.csv') + + cam = cam | {'_'.join([df[x][0],df[x][1]]): + scale* np.array(list(map(float, df[x][2:]))) + for x in df.keys() if df[x][1] in ['x','y','likelihood']} + + cams.append(cam) + + cam = cams[0] + + else: + print('loading dlc') + cam = load_dlc(eid, video_type, smoothed=smooth_dlc) # get video info cap = cv2.VideoCapture(video_path.as_uri()) @@ -84,14 +273,8 @@ def Viewer(eid, video_type, trial_range, save_video=True, eye_zoom=False): # pick trial range for which to display stuff trials = one.load_object(eid, 'trials') - num_trials = len(trials['intervals']) - if trial_range[-1] > num_trials - 1: - print('There are only %s trials' % num_trials) - print('There are %s trials' % num_trials) - frame_start = find_nearest(Times, - [trials['intervals'][trial_range[0]][0]]) - frame_stop = find_nearest(Times, - [trials['intervals'][trial_range[-1]][1]]) + + print('frame start stop', frame_start, frame_stop) ''' load wheel @@ -106,8 +289,8 @@ def Viewer(eid, video_type, trial_range, save_video=True, eye_zoom=False): pos, t = wh.interpolate_position( wheel['times'], wheel['position'], freq=1000) - w_start = find_nearest(t, trials['intervals'][trial_range[0]][0]) - w_stop = find_nearest(t, trials['intervals'][trial_range[-1]][1]) + w_start = find_nearest(t, Times[frame_start]) + w_stop = find_nearest(t, Times[frame_stop]) # confine to interval pos_int = pos[w_start:w_stop] @@ -126,32 +309,64 @@ def Viewer(eid, video_type, trial_range, save_video=True, eye_zoom=False): DLC related stuff ''' Times = Times[frame_start:frame_stop] - - # some exception for inconsisitent data formats - - + Frames = np.arange(frame_start, frame_stop) - points = np.unique(['_'.join(x.split('_')[:-1]) for x in cam.keys()]) - if len(points) == 1: - points = np.unique(['_'.join(x.split('_')[:-1]) for x in cam.keys()]) + + # liklihood threshold + l_thr = 0.9 if masked else -1 - if video_type != 'body': - d = list(points) - d.remove('tube_top') - d.remove('tube_bottom') - points = np.array(d) + points = [x[:-2] for x in cam.keys() if x[-1] == 'x'] + if video_type != 'body': + try: + d = list(points) + d.remove('tube_top') + d.remove('tube_bottom') + points = d + except: + pass + + if paws_only: + p2 = deepcopy(points) + for point in p2: + if not 'paw' in point: + points.remove(point) + + points = np.array(points) + + if ens: + + XYss = [] + + for cam in cams: + # Set values to nan if likelyhood is too low # for pqt: .to_numpy() + XYs = {} + for point in points: + x = np.ma.masked_where( + cam[point + '_likelihood'] < l_thr, cam[point + '_x']) + x = x.filled(np.nan) + y = np.ma.masked_where( + cam[point + '_likelihood'] < l_thr, cam[point + '_y']) + y = y.filled(np.nan) + XYs[point] = np.array( + [x[frame_start:frame_stop], y[frame_start:frame_stop]]) + + XYss.append(XYs) + cam = cams[0] + + # Set values to nan if likelyhood is too low # for pqt: .to_numpy() XYs = {} for point in points: x = np.ma.masked_where( - cam[point + '_likelihood'] < 0.9, cam[point + '_x']) + cam[point + '_likelihood'] < l_thr, cam[point + '_x']) x = x.filled(np.nan) y = np.ma.masked_where( - cam[point + '_likelihood'] < 0.9, cam[point + '_y']) + cam[point + '_likelihood'] < l_thr, cam[point + '_y']) y = y.filled(np.nan) XYs[point] = np.array( - [x[frame_start:frame_stop], y[frame_start:frame_stop]]) + [x[frame_start:frame_stop], y[frame_start:frame_stop]]) + # Just for 3D testing # return XYs @@ -177,8 +392,11 @@ def Viewer(eid, video_type, trial_range, save_video=True, eye_zoom=False): dot_s = 5 if save_video: + + rr = f'_{res}' if ens else '' loc = (save_vids_here / - f'{eid}_trials_{trial_range[0]}_{trial_range[-1]}_{video_type}.mp4') + f'{eid}_{video_type}_frames_{frame_start}_{frame_stop}' + f'_lp_{lp}_ens_{ens}{rr}.mp4') out = cv2.VideoWriter(str(loc), cv2.VideoWriter_fourcc(*'mp4v'), @@ -232,6 +450,18 @@ def Viewer(eid, video_type, trial_range, save_video=True, eye_zoom=False): fontScale / 2, fontColor, lineType) + + + bottomLeftCornerOfText1 = (a, b - 3* a) + cv2.putText(gray, + 'Frame: ' + str(Frames[k]), + bottomLeftCornerOfText1, + font, + fontScale / 2, + fontColor, + lineType) + + # print DLC dots ll = 0 @@ -252,21 +482,40 @@ def Viewer(eid, video_type, trial_range, save_video=True, eye_zoom=False): fontColor, lineType) - X0 = XYs[point][0][k] - Y0 = XYs[point][1][k] - # transform for opencv? - X = Y0 - Y = X0 - - if not np.isnan(X) and not np.isnan(Y): - col = (np.array([cmap(CR[ll])]) * 255)[0][:3] - # col = np.array([0, 0, 255]) # all points red - X = X.astype(int) - Y = Y.astype(int) -# cv2.imshow('frame', gray) -# print(gray.shape) -# print(X - dot_s,X + dot_s, Y - dot_s,Y + dot_s) - gray[X - dot_s:X + dot_s, Y - dot_s:Y + dot_s] = block * col + if ens: + for XYs in XYss: + + X0 = XYs[point][0][k] + Y0 = XYs[point][1][k] + # transform for opencv? + X = Y0 + Y = X0 + + if not np.isnan(X) and not np.isnan(Y): + col = (np.array([cmap(CR[ll])]) * 255)[0][:3] + # col = np.array([0, 0, 255]) # all points red + X = X.astype(int) + Y = Y.astype(int) + gray[X - dot_s:X + dot_s, Y - + dot_s:Y + dot_s] = block * col + + + if not ens: + X0 = XYs[point][0][k] + Y0 = XYs[point][1][k] + # transform for opencv? + X = Y0 + Y = X0 + + if not np.isnan(X) and not np.isnan(Y): + col = (np.array([cmap(CR[ll])]) * 255)[0][:3] + # col = np.array([0, 0, 255]) # all points red + X = X.astype(int) + Y = Y.astype(int) + gray[X - dot_s:X + dot_s, Y - + dot_s:Y + dot_s] = block * col + + ll += 1 gray = gray[y0:y1, x0:x1] From 5e92d9aa5edfca9c6c012a63e4a906afea0535d0 Mon Sep 17 00:00:00 2001 From: Mayo Faulkner Date: Fri, 12 Jan 2024 11:39:59 +0000 Subject: [PATCH 2/2] fix for offline case with different metrics file --- atlaselectrophysiology/plot_data.py | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/atlaselectrophysiology/plot_data.py b/atlaselectrophysiology/plot_data.py index f4a358f..b0214e6 100644 --- a/atlaselectrophysiology/plot_data.py +++ b/atlaselectrophysiology/plot_data.py @@ -600,7 +600,12 @@ def get_autocorr(self, clust_idx): autocorr = xcorr(self.data['spikes']['times'][idx], self.data['spikes']['clusters'][idx], AUTOCORR_BIN_SIZE, AUTOCORR_WIN_SIZE) - return autocorr[0, 0, :], self.data['clusters'].metrics.cluster_id[self.clust_id[clust_idx]] + if self.data['clusters'].get('metrics', {}).get('cluster_id', None) is None: + clust_id = self.clust_id[clust_idx] + else: + clust_id = self.data['clusters'].metrics.cluster_id[self.clust_id[clust_idx]] + + return autocorr[0, 0, :], clust_id def get_template_wf(self, clust_idx): template_wf = (self.data['clusters']['waveforms'][self.clust_id[clust_idx], :, 0])