-
Notifications
You must be signed in to change notification settings - Fork 6
/
evaluate.py
executable file
·281 lines (241 loc) · 11.3 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#!/usr/bin/env python
# ==============================================================================
# MIT License
#
# Copyright 2021 Institute for Automotive Engineering of RWTH Aachen University.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ==============================================================================
import os
import tqdm
import numpy as np
import cv2
import matplotlib.pyplot as plt
import tensorflow as tf
import json
import utils
import config
conf = config.getConf()
# load network architecture module
architecture = utils.load_module(conf.model)
# get max_samples_validation random validation samples
files_input = utils.get_files_in_folder(conf.input_validation)
files_label = utils.get_files_in_folder(conf.label_validation)
_, idcs = utils.sample_list(files_label, n_samples=conf.max_samples_validation)
files_input = np.take(files_input, idcs)
files_label = np.take(files_label, idcs)
n_samples = len(files_label)
print(f"Found {n_samples} samples")
model = architecture.getModel(conf.y_min, conf.y_max, conf.x_min, conf.x_max,
conf.step_x_size, conf.step_y_size,
conf.max_points_per_pillar, conf.max_pillars,
conf.number_features, conf.number_channels,
conf.label_resize_shape, 1)
model.load_weights(conf.model_weights)
print(f"Reloaded model from {conf.model_weights}")
# evaluate
print("Evaluating ...")
eval_dir = os.path.join(os.path.dirname(conf.model_weights), os.pardir,
"Evaluation")
# evaluation metrics
evaluation_dict = {}
evaluation_dict['deep'] = {}
evaluation_dict['deep']['KL_distance'] = []
evaluation_dict['deep']['m_unknown'] = []
evaluation_dict['deep']['m_occupied'] = []
evaluation_dict['deep']['m_free'] = []
evaluation_dict['naive'] = {}
evaluation_dict['naive']['KL_distance'] = []
evaluation_dict['naive']['m_unknown'] = []
evaluation_dict['naive']['m_occupied'] = []
evaluation_dict['naive']['m_free'] = []
def parseSampleFn(input_file, sample_idx, label_file=None):
# convert sample index to batch element index
batch_element_idx = sample_idx % conf.batch_size
# convert PCD file to matrix with columns (x, y, z, i)
#input_file = bytes.decode(input_file)
lidar = utils.readPointCloud(input_file, conf.intensity_threshold)
if label_file is not None:
# convert grid map image to matrix
#label_file = bytes.decode(label_file)
grid_map = tf.image.decode_image(tf.io.read_file(label_file))
# create point pillars
pillars, voxels = utils.make_point_pillars(
lidar, conf.max_points_per_pillar, conf.max_pillars, conf.step_x_size,
conf.step_y_size, conf.x_min, conf.x_max, conf.y_min, conf.y_max,
conf.z_min, conf.z_max, min_distance = conf.min_point_distance)
pillars = pillars.astype(np.float32)
voxels = voxels.astype(np.int32)
voxels[..., 0] = batch_element_idx
# convert grid map to tensorflow label
if label_file is not None:
grid_map = tf.image.resize(
grid_map,
conf.label_resize_shape[0:2],
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
# use only channels 'free' and 'occupied'
grid_map = tf.cast(grid_map[..., 1:3], tf.float32)
# normalize from image [0..255] to [0.0..1.0]
grid_map = tf.divide(grid_map, 255.0)
network_inputs = (pillars, voxels)
if label_file is not None:
network_labels = (grid_map)
else:
network_labels = None
return network_inputs, network_labels
for k in tqdm.tqdm(range(n_samples)):
input_file = files_input[k]
label_file = files_label[k]
input, label = parseSampleFn(input_file, 0, label_file)
prediction = model.predict(input).squeeze()
sample_name = os.path.splitext(os.path.basename(input_file))[0]
kld = tf.keras.metrics.KLDivergence()
# collect belief masses and Kullback-Leibler distance for predictions by deep ISM
prob, u, _, _ = utils.evidences_to_masses(prediction)
evaluation_dict['deep']['m_unknown'].append(float(tf.reduce_mean(u)))
evaluation_dict['deep']['m_free'].append(
float(tf.reduce_mean(prob[..., 0])))
evaluation_dict['deep']['m_occupied'].append(
float(tf.reduce_mean(prob[..., 1])))
evaluation_dict['deep']['KL_distance'].append(float(kld(label,
prediction)))
# save predicted grid map
prediction_dir = os.path.join(eval_dir, "predictions")
if not os.path.exists(prediction_dir):
os.makedirs(prediction_dir)
prediction_img = utils.evidence_to_ogm(prediction)
output_file = os.path.join(prediction_dir,
os.path.basename(files_input[k]))
cv2.imwrite(output_file + ".png",
cv2.cvtColor(prediction_img, cv2.COLOR_RGB2BGR))
# save input point cloud as image
if conf.store_input_point_clouds:
input_dir = os.path.join(eval_dir, "inputs")
if not os.path.exists(input_dir):
os.makedirs(input_dir)
lidar = utils.readPointCloud(input_file, conf.intensity_threshold)
lidar_bev = utils.lidar_to_bird_view_img(lidar,
conf.x_min,
conf.x_max,
conf.y_min,
conf.y_max,
conf.step_x_size,
conf.step_y_size,
factor=2)
output_file = os.path.join(input_dir, os.path.basename(files_input[k]))
cv2.imwrite(output_file + ".png", cv2.cvtColor(lidar_bev,
cv2.COLOR_RGB2BGR))
# save label as image
if conf.store_labels:
label_img = utils.evidence_to_ogm(label)
label_dir = os.path.join(eval_dir, "labels")
if not os.path.exists(label_dir):
os.makedirs(label_dir)
output_file = os.path.join(label_dir, os.path.basename(files_input[k]))
cv2.imwrite(output_file + ".png", cv2.cvtColor(label_img,
cv2.COLOR_RGB2BGR))
# create "naive" occupancy grid map for comparision
naive_ogm = utils.naive_geometric_ISM(input_file, conf.x_min, conf.x_max,
conf.y_min, conf.y_max,
conf.step_x_size, conf.step_y_size,
-1.11, 0.39, conf.min_point_distance)
naive_ogm = cv2.resize(
naive_ogm, (conf.label_resize_shape[1], conf.label_resize_shape[0]))
if conf.store_naive_ogms:
naive_ogm_dir = os.path.join(eval_dir, "naive_ogm")
if not os.path.exists(naive_ogm_dir):
os.makedirs(naive_ogm_dir)
naive_ogm_file = os.path.join(naive_ogm_dir, sample_name + '.png')
cv2.imwrite(naive_ogm_file, naive_ogm)
# collect belief masses and Kullback-Leibler distance for OGMs by geometric ISM
naive_ogm = naive_ogm.astype(
np.float32
)[..., 1:
3] / 255.0 # convert green and red layer to evidence layers for free and occupied
prob_naive, u_naive, _, _ = utils.evidences_to_masses(naive_ogm)
evaluation_dict['naive']['m_unknown'].append(float(
tf.reduce_mean(u_naive)))
evaluation_dict['naive']['m_free'].append(
float(tf.reduce_mean(prob_naive[..., 0])))
evaluation_dict['naive']['m_occupied'].append(
float(tf.reduce_mean(prob_naive[..., 1])))
evaluation_dict['naive']['KL_distance'].append(float(kld(label,
naive_ogm)))
# create subfolders
plot_dir = os.path.join(eval_dir, "plots")
raw_dir = os.path.join(eval_dir, "raw")
if not os.path.exists(plot_dir):
os.makedirs(plot_dir)
if not os.path.exists(raw_dir):
os.makedirs(raw_dir)
# plot cross entropy over evaluation dataset
fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_xlabel('time in seconds')
# Turn off axis lines and ticks of the big subplot
ax.spines['top'].set_color('none')
ax.spines['bottom'].set_color('none')
ax.spines['left'].set_color('none')
ax.spines['right'].set_color('none')
ax.tick_params(labelcolor='w',
top=False,
bottom=False,
left=False,
right=False)
ax1 = fig.add_subplot(211)
ax2 = fig.add_subplot(212)
t = np.arange(0, len(evaluation_dict['naive']['m_unknown']))
ax1.plot(t, evaluation_dict['deep']['m_unknown'], 'b-', t,
evaluation_dict['deep']['m_free'], 'g-', t,
evaluation_dict['deep']['m_occupied'], 'r-', t,
evaluation_dict['naive']['m_unknown'], 'b--', t,
evaluation_dict['naive']['m_free'], 'g--', t,
evaluation_dict['naive']['m_occupied'], 'r--')
ax1.set_ylim(0, 1.0)
ax1.legend([
r'$\overline{m}(\Theta)$', r'$\overline{m}(F)$', r'$\overline{m}(O)$',
r'$\overline{m}_G(\Theta)$', r'$\overline{m}_G(F)$', r'$\overline{m}_G(O)$'
])
ax2.plot(t, evaluation_dict['deep']['KL_distance'], 'k-', t,
evaluation_dict['naive']['KL_distance'], 'k--')
ax2.legend([
r'$KL\left[Dir(p|\hat{\alpha})||Dir(p|\alpha)\right]$',
r'$KL\left[Dir(p|\hat{\alpha}_G)||Dir(p|\alpha)\right]$'
])
plt.savefig(os.path.join(plot_dir, 'evaluation.png'))
# store values as json file
evaluation_json = dict()
evaluation_json['eval_kld'] = np.vstack(
(t, evaluation_dict['deep']['KL_distance'])).transpose().tolist()
evaluation_json['eval_uncertainty'] = np.vstack(
(t, evaluation_dict['deep']['m_unknown'])).transpose().tolist()
evaluation_json['eval_prob_free'] = np.vstack(
(t, evaluation_dict['deep']['m_free'])).transpose().tolist()
evaluation_json['eval_prob_occupied'] = np.vstack(
(t, evaluation_dict['deep']['m_occupied'])).transpose().tolist()
evaluation_json['eval_naive_kld'] = np.vstack(
(t, evaluation_dict['naive']['KL_distance'])).transpose().tolist()
evaluation_json['eval_naive_uncertainty'] = np.vstack(
(t, evaluation_dict['naive']['m_unknown'])).transpose().tolist()
evaluation_json['eval_naive_prob_free'] = np.vstack(
(t, evaluation_dict['naive']['m_free'])).transpose().tolist()
evaluation_json['eval_naive_prob_occupied'] = np.vstack(
(t, evaluation_dict['naive']['m_occupied'])).transpose().tolist()
with open(os.path.join(raw_dir, 'evaluation.json'), 'w') as fp:
json.dump(evaluation_json, fp)