The aim of this project is the development of intelligent agents which are able to play atari games.
- Python3
- OpenCV
- Tensorflow
- OpenAI Gym - Atari
-
Get Python3. If you are using Anaconda simply type
conda create -n atari36 python=3.6
) -
Activate virtual env
source activate atari36
-
Install dependencies
pip install numpy scipy tensorflow opencv-python gym atari-py Pillow PyOpenGL
-
For Windows refer here
https://github.com/j8lp/atari-py
to install atari environment -
On Linux you can get Intel optimized tensorflow wheel:
pip install https://anaconda.org/intel/tensorflow/1.4.0/download/tensorflow-1.4.0-cp36-cp36m-linux_x86_64.whl
To train the model:
python start_atari_dqn.py -g Pong-v0
The model is saved to %GAME_ID%/my_dqn.ckpt
by default. To view it in action, run:
python start_atari_dqn.py -r -t
For more options:
python tiny_dqn.py --help