The evaluation support metrics for classification, regression, tasks. You can use our default set of metrics or use specified metrics.
We support following default metric set for binary, multi-class classification, regression tasks:
-
Binary Classification
- AUC
- KS
- Confusion Matrix
- Gain
- Lift
- Precision Table
- Recall Table
- Accuracy Table
- FScore Table
-
Multi Classification
- Accuracy
- Precision
- Recall
-
Regression
- RMSE
- MAE
- MSE
- R2Score
Specify them in the 'default_eval_setting' parameter: 'binary', 'regression', 'multi'
You can also set metrics you want to use in the 'metrics' parameter. These metrics are available:
auc
multi_accuracy
multi_recall
multi_precision
binary_accuracy
binary_recall
binary_precision
multi_f1_score
binary_f1_score
ks
confusion_matrix
lift
gain
biclass_precision_table
biclass_recall_table
biclass_accuracy_table
fscore_table
rmse
mse
mae
r2_score