From dca4f6643cb17e4807219fe62925d5c08f6eb96d Mon Sep 17 00:00:00 2001
From: HantingChen <40243544+HantingChen@users.noreply.github.com>
Date: Mon, 31 Jul 2023 11:19:29 +0800
Subject: [PATCH] Update README.md
---
README.md | 32 ++++++++++++++++----------------
1 file changed, 16 insertions(+), 16 deletions(-)
diff --git a/README.md b/README.md
index 556ebc6..6302754 100644
--- a/README.md
+++ b/README.md
@@ -27,23 +27,23 @@ VanillaNet achieves comparable performance to prevalent computer vision foundati
- **13 layers'** VanillaNet (1.5x*) achieves about **83%** Top-1 accuracy with **9.72ms**, over **100%** speed increase compared to Swin-S (**20.25ms**).
- With tensorRT FP32 on A100, **11 layers'** VanillaNet achieves about **81%** Top-1 accuracy with **0.69ms**, over **100%** speed increase compared to Swin-T (**1.41ms**) and ResNet-101 (**1.58ms**).
-| name | Params(M) | FLOPs(B) | Latency(ms)
Pytorch
A100 | Latency(ms)
MindSpore
Ascend 910 | Latency(ms)
TRT FP32
A100 | Latency(ms)
TRT FP16
A100 | Acc(%) |
+| name | Params(M) | FLOPs(B) | Acc(%) | Latency(ms)
Pytorch
A100 | Latency(ms)
MindSpore
Ascend 910 | Latency(ms)
TRT FP32
A100 | Latency(ms)
TRT FP16
A100 |
|:---:|:---:|:---:|:---:| :---:|:---:|:---:|:---:|
-| Swin-T | 28.3 | 4.5 | 10.51 | 2.24 | 1.41 | 0.98 | 81.18 |
-| ResNet-18 | 11.7 | 1.8 | 3.12 | 0.60 | 0.41 | 0.28 | 70.6 |
-| ResNet-34 |21.8|3.7|5.57|0.97|0.77|0.49|75.5|
-| ResNet-50 |25.6|4.1|7.64|1.23|0.80|0.54|79.8|
-| ResNet-101 |45.0|8.0|15.35|2.34|1.58|1.04|81.3|
-| ResNet-152 |60.2|11.5|22.19|3.40|2.30|1.49|81.8|
-| **VanillaNet-5** | 15.5 | 5.2 | 1.61 |0.39|0.33|0.27| 72.49 |
-| **VanillaNet-6** | 32.5 | 6.0 | 2.01 |0.53|0.40|0.33| 76.36 |
-| **VanillaNet-7** | 32.8 | 6.9 | 2.27 |0.76|0.47|0.39|77.98 |
-| **VanillaNet-8** | 37.1 | 7.7 | 2.56 |0.80|0.52|0.45| 79.13 |
-| **VanillaNet-9** | 41.4 | 8.6 | 2.91 |0.86|0.58|0.49| 79.87 |
-| **VanillaNet-10** | 45.7 | 9.4 | 3.24 |0.89|0.63|0.53| 80.57 |
-| **VanillaNet-11** | 50.0 | 10.3 | 3.59 | 0.95 |0.69|0.58| 81.08 |
-| **VanillaNet-12** | 54.3 | 11.1 | 3.82 |1.00|0.75|0.62| 81.55 |
-| **VanillaNet-13** | 58.6 | 11.9 | 4.26 |1.05|0.82|0.67| 82.05 |
+| Swin-T | 28.3 | 4.5 | 81.18 | 10.51 | 2.24 | 1.41 | 0.98 |
+| ResNet-18 | 11.7 | 1.8 | 70.6 | 3.12 | 0.60 | 0.41 | 0.28 |
+| ResNet-34 |21.8|3.7|75.5|5.57|0.97|0.77|0.49|
+| ResNet-50 |25.6|4.1|79.8|7.64|1.23|0.80|0.54|
+| ResNet-101 |45.0|8.0|81.3|15.35|2.34|1.58|1.04|
+| ResNet-152 |60.2|11.5|81.8|22.19|3.40|2.30|1.49|
+| **VanillaNet-5** | 15.5 | 5.2 | 72.49 | 1.61 |0.39|0.33|0.27|
+| **VanillaNet-6** | 32.5 | 6.0 | 76.36 | 2.01 |0.53|0.40|0.33|
+| **VanillaNet-7** | 32.8 | 6.9 | 77.98 | 2.27 |0.76|0.47|0.39|
+| **VanillaNet-8** | 37.1 | 7.7 | 79.13 | 2.56 |0.80|0.52|0.45|
+| **VanillaNet-9** | 41.4 | 8.6 | 79.87 | 2.91 |0.86|0.58|0.49|
+| **VanillaNet-10** | 45.7 | 9.4 | 80.57 | 3.24 |0.89|0.63|0.53|
+| **VanillaNet-11** | 50.0 | 10.3 | 81.08 | 3.59 | 0.95 |0.69|0.58|
+| **VanillaNet-12** | 54.3 | 11.1 | 81.55 | 3.82 |1.00|0.75|0.62|
+| **VanillaNet-13** | 58.6 | 11.9 | 82.05 | 4.26 |1.05|0.82|0.67|
## Downstream Tasks