From 1daa1dd42ffd8d189563147b83558820770d7c48 Mon Sep 17 00:00:00 2001 From: HantingChen <40243544+HantingChen@users.noreply.github.com> Date: Tue, 23 May 2023 09:32:30 +0800 Subject: [PATCH] Update README.md --- README.md | 22 +++++++++++++++------- 1 file changed, 15 insertions(+), 7 deletions(-) diff --git a/README.md b/README.md index 050e465..627092c 100644 --- a/README.md +++ b/README.md @@ -1,12 +1,12 @@ # VanillaNet: the Power of Minimalism in Deep Learning
Official PyTorch implementation of **VanillaNet**, from the following paper:\ -[VanillaNet: the Power of Minimalism in Deep Learning ](https://arxiv.org/abs/)\ +[VanillaNet: the Power of Minimalism in Deep Learning ](https://arxiv.org/abs/2305.12972)\ Hanting chen, [Yunhe Wang](https://www.wangyunhe.site/), Jianyuan Guo and Dacheng Tao @@ -25,11 +25,11 @@ VanillaNet, in its robust simplicity, offers comparable precision to prevalent c | Framework | Backbone | FLOPs(G) | #params(M) | FPS | APb | APm | |:---:|:---:|:---:|:---:| :---:|:---:|:---:| -| RetinaNet | Swin-T| 245 | 38.5 | 27.5 | 41.5 | - | -| | VanillaNet-11 | 386 | 67.0 | 30.8 | 41.8 | - | +| RetinaNet | Swin-T | 245 | 38.5 | 27.5 | 41.5 | - | +| | VanillaNet-13 | 386 | 67.0 | 30.4 | 41.8 | - | | Mask RCNN | ConvNeXtV2-N | 221 | 35.2 | 31.7 | 42.7 | 38.9 | | | [Swin-T](https://github.com/open-mmlab/mmdetection/tree/main/configs/swin) | 267 | 47.8 | 28.2 | 42.7 | 39.3 | -| | VanillaNet-11 | 404 | 107.5 | 33.6 | 42.9 | 39.6 | +| | VanillaNet-13 | 404 | 107.5 | 33.2 | 42.9 | 39.6 | VanillaNet achieves a higher Frames Per Second (FPS) in **detection** and **segmentation** tasks. @@ -211,4 +211,12 @@ This repository is built using the [timm](https://github.com/rwightman/pytorch-i This project is released under the MIT license. Please see the [LICENSE](License) file for more information. ### Citation -If our work is useful for your research, please consider citation. +If our work is useful for your research, please consider citing: +``` +@article{chen2023vanillanet, + title={VanillaNet: the Power of Minimalism in Deep Learning}, + author={Chen, Hanting and Wang, Yunhe and Guo, Jianyuan and Tao, Dacheng}, + journal={arXiv preprint arXiv:2305.12972}, + year={2023} +} +```