-
-
Notifications
You must be signed in to change notification settings - Fork 27
/
README.Rmd
192 lines (146 loc) · 4.92 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
---
output: rmarkdown::github_document
editor_options:
chunk_output_type: console
---
```{r pkg-knitr-opts, include=FALSE}
hrbrpkghelpr::global_opts()
```
```{r badges, results='asis', echo=FALSE, cache=FALSE}
hrbrpkghelpr::stinking_badges()
```
```{r description, results='asis', echo=FALSE, cache=FALSE}
hrbrpkghelpr::yank_title_and_description()
```
## What's Inside The Tin
The following functions are implemented/datasets included:
```{r ingredients, results='asis', echo=FALSE, cache=FALSE}
hrbrpkghelpr::describe_ingredients()
```
- `statebins`: (the original sole function in the package) Create a new ggplot-based "statebin" chart for USA states/territories
## Installation
```{r install-ex, results='asis', echo=FALSE, cache=FALSE}
hrbrpkghelpr::install_block()
```
## Usage
All of the following examples use the [WaPo data](http://www.washingtonpost.com/wp-srv/special/business/states-most-threatened-by-trade/states.csv?cache=1). It looks like the columns they use are scaled data and I didn't take the time to figure out what they did, so the final figure just mimics their output (including the non-annotated legend).
```{r setup}
library(statebins)
library(cdcfluview)
library(hrbrthemes)
library(tidyverse)
# current verison
packageVersion("statebins")
```
### The original wapo data
```{r original}
adat <- read_csv(system.file("extdata", "wapostates.csv", package="statebins"))
mutate(
adat,
share = cut(avgshare94_00, breaks = 4, labels = c("0-1", "1-2", "2-3", "3-4"))
) %>%
statebins(
value_col = "share",
ggplot2_scale_function = scale_fill_brewer,
name = "Share of workforce with jobs lost or threatened by trade"
) +
labs(title = "1994-2000") +
theme_statebins()
```
### Continuous scale, legend on top
```{r continuous}
statebins(
adat,
value_col = "avgshare01_07",
name = "Share of workforce with jobs lost or threatened by trade",
palette = "OrRd",
direction = 1
) +
labs(x="2001-2007") +
theme_statebins(legend_position="top")
```
### Continuous scale, no legend
```{r continuous_noleg}
statebins(adat, value_col = "avgshare08_12", palette = "Purples") +
labs(x="2008-2010") +
theme_statebins(legend_position = "none")
```
### Mortality data (has Puerto Rico)
```{r mort}
# from: http://www.cdc.gov/nchs/fastats/state-and-territorial-data.htm
dat <- read_csv(system.file("extdata", "deaths.csv", package="statebins"))
statebins(dat, value_col = "death_rate", name="Per 100K pop") +
labs(title="Mortality Rate (2010)") +
theme_statebins()
```
### Fertility data
```{r fert}
statebins(dat, value_col="fertility_rate", name="Per 100K pop", palette="PuBuGn") +
labs(title="Fertility Rate (2010)") +
theme_statebins()
```
### Manual - perhaps good for elections?
```{r manual}
election_2012 <- suppressMessages(read_csv(system.file("extdata", "election2012.csv", package="statebins")))
mutate(election_2012, value = ifelse(is.na(Obama), "Romney", "Obama")) %>%
statebins(
font_size=4, dark_label = "white", light_label = "white",
ggplot2_scale_function = scale_fill_manual,
name = "Winner",
values = c(Romney = "#2166ac", Obama = "#b2182b")
) +
theme_statebins()
```
### Rounded rects!
You can pass in a `grid::units()` call for the `radius` parameter.
Slight curves:
```{r rounded}
data(USArrests)
USArrests$state <- rownames(USArrests)
statebins(USArrests, value_col="Assault", name = "Assault", round=TRUE) +
theme_statebins(legend_position="right")
```
Circles!
```{r rounded2}
statebins(USArrests, value_col="Assault", name = "Assault", round=TRUE,
radius=grid::unit(16, "pt"), palette="Reds", direction=1) +
theme_statebins(legend_position="right")
```
### Geom
```{r sb_facet, fig.width=20, fig.height=15}
flu <- ili_weekly_activity_indicators(2017)
ggplot(flu, aes(state=statename, fill=activity_level)) +
geom_statebins() +
coord_equal() +
viridis::scale_fill_viridis(
name = "ILI Activity Level ", limits=c(0,10), breaks=0:10, option = "magma", direction = -1
) +
facet_wrap(~weekend) +
labs(title="2017-18 Flu Season ILI Activity Level") +
theme_statebins(base_family = font_ps) +
theme(plot.title=element_text(size=16, hjust=0)) +
theme(plot.margin = margin(30,30,30,30))
```
### All the "states"
`statebins` now has PR, VI & NYC (by name or abbreviation) so you can use them, too:
```{r all}
library(statebins)
library(tidyverse)
library(viridis)
data(USArrests)
# make up some data for the example
rownames_to_column(USArrests, "state") %>%
bind_rows(
data_frame(
state = c("Virgin Islands", "Puerto Rico", "New York City"),
Murder = rep(mean(max(USArrests$Murder),3)),
Assault = rep(mean(max(USArrests$Assault),3)),
Rape = rep(mean(max(USArrests$Rape),3)),
UrbanPop = c(93, 95, 100)
)
) -> us_arrests
statebins(us_arrests, value_col="Assault",
ggplot2_scale_function = viridis::scale_fill_viridis) +
labs(title="USArrests + made up data") +
theme_statebins("right")
```