forked from faranbutt/Language-Lab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.py
282 lines (226 loc) · 8.86 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import replicate
import argparse
import os
import numpy as np
np.bool = bool
from flask import Flask
from flask_cors import CORS
from flask_restful import Resource
from flask_restful import Api
from flask import jsonify, make_response, send_file
cwd = os.getcwd()
import requests
from bs4 import BeautifulSoup, Comment
import base64
import os
PAT = os.environ.get("PAT")
import re
import random
from flask import Flask, request, jsonify
from flask_cors import CORS
import argparse
import os
cwd = os.getcwd()
import numpy as np
np.bool = bool
from flask import Flask
from flask_cors import CORS
from flask_restful import Resource
from flask_restful import Api
from flask import jsonify, make_response, send_file
import requests
from bs4 import BeautifulSoup, Comment
import base64
import wave
import array
from io import BytesIO
import openai
openai.api_key = os.environ.get("OPENAI_API_KEY")
print("key:", openai.api_key)
PAT = os.environ.get("PAT")
print("PAT:", PAT)
from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel
from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc
from clarifai_grpc.grpc.api.status import status_code_pb2
channel = ClarifaiChannel.get_grpc_channel()
stub = service_pb2_grpc.V2Stub(channel)
metadata = (('authorization', 'Key ' + PAT),)
def create_app():
app = Flask(__name__) # static_url_path, static_folder, template_folder...
CORS(app, resources={r"/*": {"origins": "*", "allow_headers": "*"}})
api = Api(app)
@app.route('/speechtotext', methods=['POST'])
def speechtotext():
audio_bytes_64 = request.json.get('audio')
MODEL_ID = 'whisper'
MODEL_VERSION_ID = 'ccfd40cc37c448ef87fd5f166e7cb16e'
userDataObject = resources_pb2.UserAppIDSet(user_id='openai', app_id='transcription')
post_model_outputs_response = stub.PostModelOutputs(
service_pb2.PostModelOutputsRequest(
user_app_id=userDataObject, # The userDataObject is created in the overview and is required when using a PAT
model_id=MODEL_ID,
version_id=MODEL_VERSION_ID, # This is optional. Defaults to the latest model version
inputs=[
resources_pb2.Input(
data=resources_pb2.Data(
audio=resources_pb2.Audio(
base64=base64.b64decode(audio_bytes_64)
)
)
)
]
),
metadata=metadata
)
if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
print(post_model_outputs_response.status)
raise Exception("Post model outputs failed, status: " + post_model_outputs_response.status.description)
output = post_model_outputs_response.outputs[0].data.text.raw
return jsonify({'text': output})
#returns audio in the format of 'data:audio/wav;base64,' + base64_encoded
@app.route('/texttospeech', methods=['POST'])
def texttospeech():
text = request.json.get('text')
userDataObject = resources_pb2.UserAppIDSet(user_id='eleven-labs', app_id='audio-generation')
post_model_outputs_response = stub.PostModelOutputs(
service_pb2.PostModelOutputsRequest(
user_app_id=userDataObject, # The userDataObject is created in the overview and is required when using a PAT
model_id='speech-synthesis',
version_id='7b8ef26f9dc048869cbef1cd4ecb93e4', # This is optional. Defaults to the latest model version
inputs=[
resources_pb2.Input(
data=resources_pb2.Data(
text=resources_pb2.Text(
raw=text
)
)
)
]
),
metadata=metadata
)
if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
print(post_model_outputs_response.status)
raise Exception("Post model outputs failed, status: " + post_model_outputs_response.status.description)
# Since we have one input, one output will exist here
output = post_model_outputs_response.outputs[0]
audio_raw = output.data.audio.base64
sample_rate = output.data.audio.audio_info.sample_rate
base64_encoded = base64.b64encode(audio_raw).decode('utf-8')
src = 'data:audio/wav;base64,' + base64_encoded
return jsonify({'audio': src, 'sample_rate': sample_rate})
@app.route('/randomsentence', methods=['POST'])
def randomsentence():
print("used random sentence")
language = request.json.get('language')
print("used random sentence:", language)
sentences = [
{
"original":"Hello, how are you?",
"translated":{
"german":"Hallo, wie geht's dir?",
"french":"Bonjour, comment ça va?",
"hindi":"नमस्ते, आप कैसे हैं?"
}
},
{
"original":"I love reading books.",
"translated":{
"german":"Ich liebe es, Bücher zu lesen.",
"french":"J'aime lire des livres.",
"hindi":"मुझे किताबें पढ़ना पसंद है।"
}
},
{
"original":"The sky is blue.",
"translated":{
"german":"Der Himmel ist blau.",
"french":"Le ciel est bleu.",
"hindi":"आसमान नीला है।"
}
},
{
"original":"What is your name?",
"translated":{
"german":"Wie heißt du?",
"french":"Comment vous appelez-vous?",
"hindi":"आपका नाम क्या है?"
}
},
{
"original":"The cat is sleeping.",
"translated":{
"german":"Die Katze schläft.",
"french":"Le chat dort.",
"hindi":"बिल्ली सो रही है।"
}
},
{
"original":"Dinner is ready.",
"translated":{
"german":"Das Abendessen ist fertig.",
"french":"Le dîner est prêt.",
"hindi":"खाना तैयार है।"
}
},
{
"original":"I am learning a new language.",
"translated":{
"german":"Ich lerne eine neue Sprache.",
"french":"J'apprends une nouvelle langue.",
"hindi":"मैं एक नई भाषा सीख रहा हूँ।"
}
},
{
"original":"Can you help me?",
"translated":{
"german":"Kannst du mir helfen?",
"french":"Pouvez-vous m'aider?",
"hindi":"क्या आप मेरी मदद कर सकते हैं?"
}
},
{
"original":"She sings beautifully.",
"translated":{
"german":"Sie singt wunderschön.",
"french":"Elle chante magnifiquement.",
"hindi":"वह सुंदरता से गाती है।"
}
},
{
"original":"It's raining outside.",
"translated":{
"german":"Es regnet draußen.",
"french":"Il pleut dehors.",
"hindi":"बाहर बारिश हो रही है।"
}
}
]
choice = random.choice(sentences)
return jsonify({'original': choice['original'], 'translated': choice['translated'][language]})
return app
def start_server():
print("Starting server...")
parser = argparse.ArgumentParser()
#python server.py --host 127.0.0.1 --port 8000 --debug
# API flag
parser.add_argument(
"--host",
default="0.0.0.0",
help="The host to run the server",
)
parser.add_argument(
"--port",
default=os.environ.get("PORT"),
help="The port to run the server",
)
parser.add_argument(
"--debug",
action="store_true",
help="Run Flask in debug mode",
)
args = parser.parse_args()
server_app = create_app()
server_app.run(debug=args.debug, host=args.host, port=args.port)
if __name__ == "__main__":
start_server()