-
Notifications
You must be signed in to change notification settings - Fork 15
/
create_dataset.py
83 lines (70 loc) · 3.36 KB
/
create_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import os
import sys
import argparse
import random
parser = argparse.ArgumentParser()
requiredArguments = parser.add_argument_group("required arguments")
requiredArguments.add_argument("-s", "--sourcedir", type=str, required=True, help="Directory containing the annotations and images")
requiredArguments.add_argument("-t", "--targetdir", type=str, required=True, help="The direcectory which will contain the yolo dataset")
requiredArguments.add_argument("-l", "--labelsfile", type=str, required=True, help="File containing the label")
parser.add_argument("-v", "--validationdir", type=str, required=False, help="Directory containing the validation annotations and images"
+ " If not specified, 10 percent of the train images will be used.")
args = parser.parse_args()
classes = []
with open(args.labelsfile) as lblFile:
classes = lblFile.readlines()
classes = [x.strip() for x in classes if x.strip()]
targetDir = args.targetdir
if (not os.path.exists(targetDir)):
os.makedirs(targetDir)
imgExts = [".jpg", ".jpeg", ".png"]
def collectAnnotatedImgs(imgDir):
annotatedImgs = []
for root, directories, filenames in os.walk(imgDir):
for filename in filenames:
basename = os.path.basename(filename)
split = os.path.splitext(basename)
if(len(split) > 1):
basenameNoExt = os.path.splitext(basename)[0]
basenameExt = split[1]
if basenameExt.lower() in imgExts:
imgPath = os.path.join(root, filename)
annPath = os.path.join(root, basenameNoExt+".txt")
if(os.path.isfile(annPath)):
annotatedImgs.append(os.path.abspath(imgPath))
return annotatedImgs
trainImgs = collectAnnotatedImgs(args.sourcedir);
trainFile = os.path.join(targetDir, "train.txt");
valImgs = []
if(args.validationdir):
valImgs = collectAnnotatedImgs(args.validationdir);
trainImgs = [x for x in trainImgs if x not in valImgs]
else:
amounntValImg = int(len(trainImgs) / 10)
if(amounntValImg) < len(trainImgs):
random.shuffle(trainImgs)
for i in range(amounntValImg):
valImgs.append(trainImgs.pop(i))
with open(trainFile, 'w') as outFile:
for img in trainImgs:
outFile.write(img+"\n")
valFile = os.path.join(targetDir, "valid.txt");
with open(valFile, 'w') as outFile:
for img in valImgs:
outFile.write(img+"\n")
backupDir = os.path.join(targetDir, "backup");
if (not os.path.exists(backupDir)):
os.makedirs(backupDir)
classesFile = os.path.join(targetDir, "train.names");
if(os.path.abspath(classesFile) != os.path.abspath(args.labelsfile)):
with open(classesFile, "w") as cF:
line = "\n".join(classes)
cF.write(line)
with open(os.path.join(targetDir, "train.data"), 'w') as dataFile:
dataFile.write("classes = "+str(len(classes))+ "\n")
dataFile.write("names = "+os.path.abspath(classesFile) + "\n")
dataFile.write("backup = "+os.path.abspath(backupDir) + "\n")
dataFile.write("train = "+os.path.abspath(trainFile) + "\n")
dataFile.write("valid = "+os.path.abspath(valFile) + "\n")
print("Picked", len(trainImgs), "training images")
print("Picked", len(valImgs), "validation images")