-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmain.py
83 lines (67 loc) · 3.79 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from StarGAN import StarGAN
import argparse
from utils import *
"""parsing and configuration"""
def parse_args():
desc = "Keras implementation of StarGAN"
parser = argparse.ArgumentParser(description=desc)
# Model configuration.
parser.add_argument('--c_dim', type=int, default=5, help='dimension of domain labels on CelebA dataset)')
parser.add_argument('--image_size', type=int, default=128, help='image resolution')
parser.add_argument('--g_conv_dim', type=int, default=64, help='number of conv filters in the first layer of G')
parser.add_argument('--d_conv_dim', type=int, default=64, help='number of conv filters in the first layer of D')
parser.add_argument('--g_repeat_num', type=int, default=6, help='number of residual blocks in G')
parser.add_argument('--d_repeat_num', type=int, default=6, help='number of strided conv layers in D')
parser.add_argument('--lambda_cls', type=float, default=1, help='weight for domain classification loss')
parser.add_argument('--lambda_rec', type=float, default=10, help='weight for reconstruction loss')
parser.add_argument('--lambda_gp', type=float, default=10, help='weight for gradient penalty')
# Training configuration.
parser.add_argument('--dataset', type=str, default='CelebA', help='dataset_name')
parser.add_argument('--batch_size', type=int, default=4, help='mini-batch size')
parser.add_argument('--num_iters', type=int, default=200000, help='number of total iterations for training D')
parser.add_argument('--num_iters_decay', type=int, default=100000, help='number of iterations for decaying lr')
parser.add_argument('--g_lr', type=float, default=0.0001, help='learning rate for G')
parser.add_argument('--d_lr', type=float, default=0.0001, help='learning rate for D')
parser.add_argument('--n_critic', type=int, default=5, help='number of D updates per each G update')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for Adam optimizer')
parser.add_argument('--beta2', type=float, default=0.999, help='beta2 for Adam optimizer')
parser.add_argument('--selected_attrs', '--list', nargs='+', help='selected attributes for the CelebA dataset',
default=['Black_Hair', 'Blond_Hair', 'Brown_Hair', 'Male', 'Young'])
# Test configuration.
parser.add_argument('--test_iters', type=int, default=200000, help='test model from this step')
# Miscellaneous.
parser.add_argument('--mode', type=str, default='train', choices=['train', 'test', 'custom'])
# Directories.
parser.add_argument('--data_dir', type=str, default='data/celeba')
parser.add_argument('--model_save_dir', type=str, default='models')
parser.add_argument('--sample_dir', type=str, default='samples')
parser.add_argument('--result_dir', type=str, default='results')
# Step size.
parser.add_argument('--log_step', type=int, default=10)
parser.add_argument('--sample_step', type=int, default=1000)
parser.add_argument('--model_save_step', type=int, default=10000)
parser.add_argument('--lr_update_step', type=int, default=1000)
# Custom image
parser.add_argument('--custom_image_name', type=str, default='test.png')
parser.add_argument('--custom_image_label', '--list2', nargs='+', type=int, default=[1, 0, 0, 1, 1])
return parser.parse_args()
"""main"""
def main():
# parse arguments
args = parse_args()
if args is None:
exit()
gan = StarGAN(args)
# build graph
gan.build_model()
if args.mode == 'train' :
gan.train()
print(" [*] Training finished!")
if args.mode == 'test' :
gan.test()
print(" [*] Test finished!")
if args.mode == 'custom' :
gan.custom()
print(" [*] Test on custom image finished!")
if __name__ == '__main__':
main()