-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
171 lines (150 loc) · 7.13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
"""Train a seq2seq model."""
import argparse
import numpy
import six
import chainer
from chainer import training
from chainer.training import extensions
from net import Seq2seq
from metrics import CalculateBleu
from utils import load_vocabulary
from utils import load_data
from utils import calculate_unknown_ratio
from utils import seq2seq_pad_concat_convert
def main():
parser = argparse.ArgumentParser(description='Attention-based NMT')
parser.add_argument('SOURCE', help='source sentence list')
parser.add_argument('TARGET', help='target sentence list')
parser.add_argument('SOURCE_VOCAB', help='source vocabulary file')
parser.add_argument('TARGET_VOCAB', help='target vocabulary file')
parser.add_argument('--validation-source',
help='source sentence list for validation')
parser.add_argument('--validation-target',
help='target sentence list for validation')
parser.add_argument('--batchsize', '-b', type=int, default=128,
help='number of sentence pairs in each mini-batch')
parser.add_argument('--epoch', '-e', type=int, default=20,
help='number of sweeps over the dataset to train')
parser.add_argument('--gpu', '-g', type=int, default=-1,
help='GPU ID (negative value indicates CPU)')
parser.add_argument('--resume', '-r', default='',
help='resume the training from snapshot')
parser.add_argument('--encoder-unit', type=int, default=128,
help='number of units')
parser.add_argument('--encoder-layer', type=int, default=3,
help='number of layers')
parser.add_argument('--encoder-dropout', type=int, default=0.1,
help='number of layers')
parser.add_argument('--decoder-unit', type=int, default=128,
help='number of units')
parser.add_argument('--attention-unit', type=int, default=128,
help='number of units')
parser.add_argument('--maxout-unit', type=int, default=128,
help='number of units')
parser.add_argument('--min-source-sentence', type=int, default=1,
help='minimium length of source sentence')
parser.add_argument('--max-source-sentence', type=int, default=50,
help='maximum length of source sentence')
parser.add_argument('--log-interval', type=int, default=200,
help='number of iteration to show log')
parser.add_argument('--validation-interval', type=int, default=4000,
help='number of iteration to evlauate the model '
'with validation dataset')
parser.add_argument('--out', '-o', default='result',
help='directory to output the result')
parser.add_argument('--debug', action='store_true',
help='use a small part of training data')
args = parser.parse_args()
source_ids = load_vocabulary(args.SOURCE_VOCAB)
target_ids = load_vocabulary(args.TARGET_VOCAB)
train_source = load_data(source_ids, args.SOURCE, debug=args.debug)
train_target = load_data(target_ids, args.TARGET, debug=args.debug)
assert len(train_source) == len(train_target)
train_data = [(s, t)
for s, t in six.moves.zip(train_source, train_target)
if args.min_source_sentence <= len(s)
<= args.max_source_sentence and
args.min_source_sentence <= len(t)
<= args.max_source_sentence]
train_source_unk = calculate_unknown_ratio(
[s for s, _ in train_data]
)
train_target_unk = calculate_unknown_ratio(
[t for _, t in train_data]
)
print('Source vocabulary size: {}'.format(len(source_ids)))
print('Target vocabulary size: {}'.format(len(target_ids)))
print('Train data size: {}'.format(len(train_data)))
print('Train source unknown: {0:.2f}'.format(train_source_unk))
print('Train target unknown: {0:.2f}'.format(train_target_unk))
target_words = {i: w for w, i in target_ids.items()}
source_words = {i: w for w, i in source_ids.items()}
model = Seq2seq(len(source_ids), len(target_ids), args.encoder_layer,
args.encoder_unit, args.encoder_dropout,
args.decoder_unit, args.attention_unit, args.maxout_unit)
if args.gpu >= 0:
chainer.cuda.get_device(args.gpu).use()
model.to_gpu(args.gpu)
optimizer = chainer.optimizers.Adam()
optimizer.setup(model)
train_iter = chainer.iterators.SerialIterator(train_data, args.batchsize)
updater = training.StandardUpdater(
train_iter, optimizer, converter=seq2seq_pad_concat_convert,
device=args.gpu
)
trainer = training.Trainer(updater, (args.epoch, 'epoch'))
trainer.extend(
extensions.LogReport(trigger=(args.log_interval, 'iteration'))
)
trainer.extend(
extensions.PrintReport(
['epoch', 'iteration', 'main/loss', 'validation/main/loss',
'main/perp', 'validation/main/perp', 'validation/main/bleu',
'elapsed_time']
),
trigger=(args.log_interval, 'iteration')
)
if args.validation_source and args.validation_target:
test_source = load_data(source_ids, args.validation_source)
test_target = load_data(target_ids, args.validation_target)
assert len(test_source) == len(test_target)
test_data = list(six.moves.zip(test_source, test_target))
test_data = [(s, t) for s, t in test_data if 0 < len(s) and 0 < len(t)]
test_source_unk = calculate_unknown_ratio(
[s for s, _ in test_data]
)
test_target_unk = calculate_unknown_ratio(
[t for _, t in test_data]
)
print('Validation data: {}'.format(len(test_data)))
print('Validation source unknown: {0:.2f}'.format(test_source_unk))
print('Validation target unknown: {0:.2f}'.format(test_target_unk))
@chainer.training.make_extension()
def translate(_):
source, target = seq2seq_pad_concat_convert(
[test_data[numpy.random.choice(len(test_data))]],
args.gpu
)
result = model.translate(source)[0].reshape(1, -1)
source, target, result = source[0], target[0], result[0]
source_sentence = ' '.join([source_words[int(x)] for x in source])
target_sentence = ' '.join([target_words[int(y)] for y in target])
result_sentence = ' '.join([target_words[int(y)] for y in result])
print('# source : ' + source_sentence)
print('# result : ' + result_sentence)
print('# expect : ' + target_sentence)
trainer.extend(
translate,
trigger=(args.validation_interval, 'iteration')
)
trainer.extend(
CalculateBleu(
model, test_data, device=args.gpu,
key='validation/main/bleu'
),
trigger=(args.validation_interval, 'iteration')
)
print('start training')
trainer.run()
if __name__ == '__main__':
main()