-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtanh_polar_to_cartesian_test.py
245 lines (223 loc) · 12.3 KB
/
tanh_polar_to_cartesian_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os
import cv2
import time
import torch
import numpy as np
from typing import Tuple, Optional
from argparse import ArgumentParser
from ibug.face_detection import RetinaFacePredictor, S3FDPredictor
from ibug.roi_tanh_warping import *
from ibug.roi_tanh_warping import reference_impl as ref
@torch.no_grad()
def test_pytorch_impl(device: str, frame: np.ndarray, face_box: np.ndarray, target_width: int, target_height: int,
offset: float, restore: bool, compare: bool, compare_direct: bool, square: bool,
keep_aspect_ratio: bool, reverse: bool) -> Tuple[np.ndarray, np.ndarray, Optional[np.ndarray],
Optional[np.ndarray], Optional[np.ndarray]]:
# Preparation
if square:
face_box = ref.make_square_rois(face_box[:4])
frames = torch.from_numpy(frame.astype(np.float32)).to(device).permute(2, 0, 1).unsqueeze(0)
face_boxes = torch.from_numpy(face_box[:4]).to(device).unsqueeze(0)
if reverse:
# ROI-tanh warping
roi_tanh_frames = roi_tanh_warp(frames, face_boxes, target_width, target_height, offset, padding='border')
# ROI-tanh to ROI-tanh-polar
roi_tanh_polar_frames = roi_tanh_to_roi_tanh_polar(roi_tanh_frames, face_boxes, padding='border',
keep_aspect_ratio=keep_aspect_ratio)
# Restore from ROI-tanh-polar
if restore:
restored_frames = roi_tanh_polar_restore(roi_tanh_polar_frames, face_boxes, *frame.shape[1::-1],
angular_offsets=offset, padding='border',
keep_aspect_ratio=keep_aspect_ratio)
else:
restored_frames = None
# Compute difference with direct warping
if compare_direct:
reference_frames = roi_tanh_polar_warp(frames, face_boxes, target_width, target_height, offset,
padding='border', keep_aspect_ratio=keep_aspect_ratio)
diff_directs = torch.abs(reference_frames - roi_tanh_polar_frames)
else:
diff_directs = None
else:
# ROI-tanh-polar warping
roi_tanh_polar_frames = roi_tanh_polar_warp(frames, face_boxes, target_width, target_height, offset,
padding='border', keep_aspect_ratio=keep_aspect_ratio)
# ROI-tanh-polar to ROI-tanh
roi_tanh_frames = roi_tanh_polar_to_roi_tanh(roi_tanh_polar_frames, face_boxes, padding='border',
keep_aspect_ratio=keep_aspect_ratio)
# Restore from ROI-tanh
if restore:
restored_frames = roi_tanh_restore(roi_tanh_frames, face_boxes, *frame.shape[1::-1],
angular_offsets=offset, padding='border')
else:
restored_frames = None
# Compute difference with direct warping
if compare_direct:
reference_frames = roi_tanh_warp(frames, face_boxes, target_width, target_height, offset, padding='border')
diff_directs = torch.abs(reference_frames - roi_tanh_frames)
else:
diff_directs = None
roi_tanh_polar_frame = roi_tanh_polar_frames[0].permute(1, 2, 0).cpu().numpy().astype(np.uint8)
roi_tanh_frame = roi_tanh_frames[0].permute(1, 2, 0).cpu().numpy().astype(np.uint8)
if restored_frames is None:
restored_frame = None
else:
restored_frame = restored_frames[0].permute(1, 2, 0).cpu().numpy().astype(np.uint8)
if diff_directs is None:
diff_direct = None
else:
diff_direct = diff_directs[0].permute(1, 2, 0).cpu().numpy().astype(np.uint8)
if compare:
if reverse:
ref_roi_tanh_polar_frame = ref.roi_tanh_to_roi_tanh_polar(
roi_tanh_frame, face_box, target_width, target_height,
border_mode=cv2.BORDER_REPLICATE, keep_aspect_ratio=keep_aspect_ratio)
diff_ref = np.abs(ref_roi_tanh_polar_frame.astype(int) - roi_tanh_polar_frame.astype(int)).astype(np.uint8)
else:
ref_roi_tanh_frame = ref.roi_tanh_polar_to_roi_tanh(
roi_tanh_polar_frame, face_box, target_width, target_height,
border_mode=cv2.BORDER_REPLICATE, keep_aspect_ratio=keep_aspect_ratio)
diff_ref = np.abs(ref_roi_tanh_frame.astype(int) - roi_tanh_frame.astype(int)).astype(np.uint8)
else:
diff_ref = None
return roi_tanh_polar_frame, roi_tanh_frame, restored_frame, diff_ref, diff_direct
def main() -> None:
parser = ArgumentParser()
parser.add_argument('--video', '-v', help='Video source (default=0)', default=0)
parser.add_argument('--width', '-x', help='Width of the warped image (default=256)', type=int, default=256)
parser.add_argument('--height', '-y', help='Height of the warped image (default=256)', type=int, default=256)
parser.add_argument('--offset', '-o', help='Angular offset, only used when polar>0', type=float, default=0.0)
parser.add_argument('--restore', '-r', help='Show restored frames',
action='store_true', default=False)
parser.add_argument('--compare', '-c', help='Compare with reference implementation',
action='store_true', default=False)
parser.add_argument('--compare-direct', '-t', help='Compare with directly warped frames',
action='store_true', default=False)
parser.add_argument('--square', '-s', help='Use square-shaped detection box',
action='store_true', default=False)
parser.add_argument('--keep-aspect-ratio', '-k', help='Keep aspect ratio in tanh-polar or tanh-circular warping',
action='store_true', default=False)
parser.add_argument('--reverse', '-i', help='Perform computation in the reverse direction',
action='store_true', default=False)
parser.add_argument('--device', '-d', default='cuda:0',
help='Device to be used by the warping functions (default=cuda:0)')
parser.add_argument('--benchmark', '-b', help='Enable benchmark mode for CUDNN',
action='store_true', default=False)
parser.add_argument('--detection-threshold', '-dt', type=float, default=0.8,
help='Confidence threshold for face detection (default=0.8)')
parser.add_argument('--detection-method', '-dm', default='retinaface',
help='Face detection method, can be either RatinaFace or S3FD (default=RatinaFace)')
parser.add_argument('--detection-weights', '-dw', default=None,
help='Weights to be loaded for face detection, ' +
'can be either resnet50 or mobilenet0.25 when using RetinaFace')
parser.add_argument('--detection-device', '-dd', default='cuda:0',
help='Device to be used for face detection (default=cuda:0)')
args = parser.parse_args()
# Make the models run a bit faster
torch.backends.cudnn.benchmark = args.benchmark
# Create the face detector
args.detection_method = args.detection_method.lower()
if args.detection_method == 'retinaface':
face_detector = RetinaFacePredictor(threshold=args.detection_threshold, device=args.detection_device,
model=(RetinaFacePredictor.get_model(args.detection_weights)
if args.detection_weights else None))
print('Face detector created using RetinaFace.')
elif args.detection_method == 's3fd':
face_detector = S3FDPredictor(threshold=args.detection_threshold, device=args.detection_device,
model=(S3FDPredictor.get_model(args.detection_weights)
if args.detection_weights else None))
print('Face detector created using S3FD.')
else:
raise ValueError('detector-method must be set to either RetinaFace or S3FD')
# Open webcam
if os.path.exists(args.video):
vid = cv2.VideoCapture(args.video)
print('Video file opened: %s.' % args.video)
else:
vid = cv2.VideoCapture(int(args.video))
print('Webcam #%d opened.' % int(args.video))
# Detect objects in the frames
try:
frame_number = 0
script_name = os.path.splitext(os.path.basename(__file__))[0]
print('Face detection started, press \'Q\' to quit.')
while True:
_, frame = vid.read()
if frame is None:
break
else:
# Face detection
face_boxes = face_detector(frame, rgb=False)
if len(face_boxes) > 0:
biggest_face_idx = int(np.argmax([(bbox[3] - bbox[1]) * (bbox[2] - bbox[0])
for bbox in face_boxes]))
# Test the warping functions
start_time = time.time()
roi_tanh_polar_frame, roi_tanh_frame, restored_frame, diff_ref, diff_direct = test_pytorch_impl(
args.device, frame, face_boxes[biggest_face_idx], args.width, args.height,
args.offset / 180.0 * np.pi, args.restore, args.compare, args.compare_direct,
args.square, args.keep_aspect_ratio, args.reverse)
elapsed_time = time.time() - start_time
print(f'Frame #{frame_number}: Warped and processed in {elapsed_time * 1000.0: .1f} ms.')
# Rendering
for idx, bbox in enumerate(face_boxes):
if idx == biggest_face_idx:
border_colour = (0, 0, 255)
else:
border_colour = (128, 128, 128)
cv2.rectangle(frame, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])),
color=border_colour, thickness=2)
else:
roi_tanh_polar_frame = None
roi_tanh_frame = None
restored_frame = None
diff_ref = None
diff_direct = None
print(f'Frame #{frame_number}: No face detected.')
# Show the result
cv2.imshow(script_name, frame)
if args.reverse:
if roi_tanh_frame is None:
cv2.destroyWindow('ROI-Tanh')
else:
cv2.imshow('ROI-Tanh', roi_tanh_frame)
if roi_tanh_polar_frame is None:
cv2.destroyWindow('ROI-Tanh-Polar')
else:
cv2.imshow('ROI-Tanh-Polar', roi_tanh_polar_frame)
else:
if roi_tanh_polar_frame is None:
cv2.destroyWindow('ROI-Tanh-Polar')
else:
cv2.imshow('ROI-Tanh-Polar', roi_tanh_polar_frame)
if roi_tanh_frame is None:
cv2.destroyWindow('ROI-Tanh')
else:
cv2.imshow('ROI-Tanh', roi_tanh_frame)
if args.restore:
if restored_frame is None:
cv2.destroyWindow('Restored')
else:
cv2.imshow('Restored', restored_frame)
if args.compare_direct:
if diff_direct is None:
cv2.destroyWindow('Diff-w-Direct')
else:
cv2.imshow('Diff-w-Direct', diff_direct)
if args.compare:
if diff_ref is None:
cv2.destroyWindow('Diff-w-Ref')
else:
cv2.imshow('Diff-w-Ref', diff_ref)
key = cv2.waitKey(1) % 2 ** 16
if key == ord('q') or key == ord('Q'):
print("\'Q\' pressed, we are done here.")
break
else:
frame_number += 1
finally:
cv2.destroyAllWindows()
vid.release()
print('We are done here.')
if __name__ == '__main__':
main()