Skip to content

Latest commit

 

History

History
221 lines (191 loc) · 6.44 KB

README.md

File metadata and controls

221 lines (191 loc) · 6.44 KB

The Autoscaling Workshop

This repository contains all the files for the workshop around Autoscaling in Kubernetes.

This repository showcase the usage of several solutions with Dynatrace:

  • OpenCost
  • Keptn lifecylce Toolkit
  • HPA

Prerequisite

The following tools need to be install on your machine :

  • jq
  • kubectl
  • git
  • gcloud ( if you are using GKE)
  • Helm

1.Create a Google Cloud Platform Project

PROJECT_ID="<your-project-id>"
gcloud services enable container.googleapis.com --project ${PROJECT_ID}
gcloud services enable monitoring.googleapis.com \
cloudtrace.googleapis.com \
clouddebugger.googleapis.com \
cloudprofiler.googleapis.com \
--project ${PROJECT_ID}

2.Create a GKE cluster

ZONE=europe-west3-a
NAME=autoscaling-workshop
gcloud container clusters create ${NAME} --zone=${ZONE} --machine-type=e2-standard-8 --num-nodes=2

3.Clone Github repo

git clone https://github.com/henrikrexed/Autoscaling-workshop
cd Autoscaling-workshop

4. Deploy

2. Dynatrace

1. Dynatrace Tenant - start a trial

If you don't have any Dynatrace tenant , then i suggest to create a trial using the following link : Dynatrace Trial Once you have your Tenant save the Dynatrace (including https) tenant URL in the variable DT_TENANT_URL (for example : https://dedededfrf.live.dynatrace.com)

DT_TENANT_URL=<YOUR TENANT URL>
2. Create the Dynatrace API Tokens

The dynatrace operator will require to have several tokens:

  • Token to deploy and configure the various components
  • Token to ingest metrics and Traces
Operator Token

One for the operator having the following scope:

  • Create ActiveGate tokens
  • Read entities
  • Read Settings
  • Write Settings
  • Access problem and event feed, metrics and topology
  • Read configuration
  • Write configuration
  • Paas integration - installer downloader

operator token

Save the value of the token . We will use it later to store in a k8S secret

API_TOKEN=<YOUR TOKEN VALUE>
Ingest data token

Create a Dynatrace token with the following scope:

  • Ingest metrics (metrics.ingest)
  • Ingest logs (logs.ingest)
  • Ingest events (events.ingest)
  • Ingest OpenTelemetry
  • Read metrics

data token

Save the value of the token . We will use it later to store in a k8S secret
DATA_INGEST_TOKEN=<YOUR TOKEN VALUE>

3. Run the deployment script

cd ..
chmod 777 deployment.sh
./deployment.sh  --clustername "${NAME}" --dturl "${DT_TENANT_URL}" --dtingesttoken "${DATA_INGEST_TOKEN}" --dtoperatortoken "${API_TOKEN}"

6. Optimize the Ressources

a. Deploy the the Dynatrace Dashboards

First let's start with the cluster efficiency Dashboard :

curl -X 'POST' \
'${DT_TENANT_URL}/api/config/v1/dashboards' \
-H 'accept: application/json; charset=utf-8' \
-H 'Content-Type: application/json; charset=utf-8' \
-H 'Authorization: Api-Token ${API_TOKEN}'\
-d @dynatrace/Cluster efficiency.json'

then the K6 dashboard:

curl -X 'POST' \
'${DT_TENANT_URL}/api/config/v1/dashboards' \
-H 'accept: application/json; charset=utf-8' \
-H 'Content-Type: application/json; charset=utf-8' \
-H 'Authorization: Api-Token ${API_TOKEN}'\
-d @dynatrace/K6 load test.json'

b. Look at the dashboard "Cluster effiency"

data token

We can see that the deployed workload is not efficient and the namespace hipster-shop is the most expensive. We can reduce the cost of the cluster by modifying the request & limits.

c. Reduce the cost of the Hipster-shop namespace

The repository has another version of the hipster-shop deployment file having lower value for the ressource :

  • requests
  • limit Let's apply the update version of the hipster-shop :
kubectl apply -f hipstershop/k8s-manifest.yaml -n hipster-shop

d. Run a rampup test

kubectl apply -f k6/loadtest_job.yaml -n hipster-shop

7. Autoscaling

To handle the load properly let's deploy some HPA rules on the following deployments :

  • frontend
  • productcalalogservice
  • cartservice
  • checkoutservice
  • recommendationservice let's stop the load test started :
kubectl delete -f k6/loadtest_job.yaml -n hipster-shop

a. Deploy the HPA rule

kubectl apply -f hpa/hpa_cpu.yaml-n hipster-shop

b. Run a Load test

kubectl apply -f k6/loadtest_job.yaml -n hipster-shop

c. Impact of the HPA on default ressource metrics

let's stop the load test started :

kubectl delete -f k6/loadtest_job.yaml -n hipster-shop

By looking at Dynatrace, we can see that :

  • the cost of the cluster has increased
  • we have pending workload
  • we still have performance issues

7. Autoscaling with the Keptn Metric server

Let's remove The hipster-shop to make sure all our workload has only 1 replica

kubectl delete -f hpa/hpa_cpu.yaml-n hipster-shop
kubectl delete -f hipstershop/k8s-manifest.yaml -n hipster-shop
sleep 5
kubectl apply -f hipstershop/k8s-manifest.yaml -n hipster-shop

a. Deploy the KeptnMetricProvider for Dynatrace

kubectl apply -f keptn/metricProvider.yaml -n hipster-shop

b. Let's create relevant KeptnMetrics for the Hipster-shop

In Dynatrace, let's create a metric expression to measure :

  • the number of request coming in the frontend service
  • the % of CPU throttling

c. Let's deploy the KeptnMetrics using our metric expression

kubectl apply -f keptn/keptnmetric.yaml -n hipster-shop

d. let's Deploy our New HPA rules using our KeptnMetric

kubectl apply -f keptn/hpa.yaml -n hipster-shop

f. Let's run a loadtest

kubectl apply -f k6/loadtest_job.yaml -n hipster-shop

g. Let's create another HPA rules based on CPU throttling

kubectl delete -f keptn/hpa.yaml -n hipster-shop
kubectl delete -f k6/loadtest_job.yaml -n hipster-shop
kubectl delete -f hipstershop/k8s-manifest.yaml -n hipster-shop
sleep 5
kubectl apply -f hipstershop/k8s-manifest.yaml -n hipster-shop

Let's create our new Metrics:

kubectl apply -f keptn/v2/keptnmetric.yam -n hipster-shop

And create our new HPA rule:

kubectl apply -f keptn/v2/hpa.yaml -n hipster-shop

And let's run our new load test:

kubectl apply -f k6/loadtest_job.yaml -n hipster-shop