-
Notifications
You must be signed in to change notification settings - Fork 5
Description
I am trying to understand the power calculation function power.general.withDoublets. I created 3 reference studies, with low, medium and high fold change values; I expect the power to increase with every setting being fixed. But the power provided was lowest for the medium fold changes. Can you explain why?
`
dat=scPower::de.ref.study
dat2=dat[dat$name=="Blueprint (CLL) uCLL-iCLL",]
dat2=dat2[order(dat2$FoldChange),]
dat3=dat2[11:15,]; dat3$rank=10001:10005
dat4=dat2[121:125,]; dat4$rank=10001:10005
dat5=dat2[331:335,]; dat5$rank=10001:10005
power3<-power.general.withDoublets(nSamples=10,nCells=7000,readDepth=25000,ct.freq=0.3,
type="de", ref.study=dat3, ref.study.name="Blueprint (CLL) uCLL-iCLL",
samplesPerLane=2,read.umi.fit = scPower::read.umi.fit[read.umi.fit$type=="10X_PBMC_1",],
gamma.mixed.fits = scPower::gamma.mixed.fits,ct="CD4 T cells",
disp.fun.param=scPower::disp.fun.param,mappingEfficiency = 1,
min.UMI.counts = 3,perc.indiv.expr = 0.9,sign.threshold = 0.05,MTmethod="Bonferroni",
multipletRateGrowth="constant")
power4<-power.general.withDoublets(nSamples=10,nCells=7000,readDepth=25000,ct.freq=0.3,
type="de", ref.study=dat4, ref.study.name="Blueprint (CLL) uCLL-iCLL",
samplesPerLane=2,read.umi.fit = scPower::read.umi.fit[read.umi.fit$type=="10X_PBMC_1",],
gamma.mixed.fits = scPower::gamma.mixed.fits,ct="CD4 T cells",
disp.fun.param=scPower::disp.fun.param,mappingEfficiency = 1,
min.UMI.counts = 3,perc.indiv.expr = 0.9,sign.threshold = 0.05,MTmethod="Bonferroni",
multipletRateGrowth="constant")
power5<-power.general.withDoublets(nSamples=10,nCells=7000,readDepth=25000,ct.freq=0.3,
type="de", ref.study=dat5, ref.study.name="Blueprint (CLL) uCLL-iCLL",
samplesPerLane=2,read.umi.fit = scPower::read.umi.fit[read.umi.fit$type=="10X_PBMC_1",],
gamma.mixed.fits = scPower::gamma.mixed.fits,ct="CD4 T cells",
disp.fun.param=scPower::disp.fun.param,mappingEfficiency = 1,
min.UMI.counts = 3,perc.indiv.expr = 0.9,sign.threshold = 0.05,MTmethod="Bonferroni",
multipletRateGrowth="constant")
`
here is the output:
power3:
name powerDetect exp.probs power sampleSize
1 Blueprint (CLL) uCLL-iCLL 0.9889792 0.9900965 0.9988715 10
totalCells usableCells multipletFraction ctCells readDepth readDepthSinglet
1 7000 7000 7.67e-06 2100 25000 25000
mappedReadDepth expressedGenes
1 25000 11210
power4:
name powerDetect exp.probs power sampleSize
1 Blueprint (CLL) uCLL-iCLL 0.501316 0.9900965 0.5063288 10
totalCells usableCells multipletFraction ctCells readDepth readDepthSinglet
1 7000 7000 7.67e-06 2100 25000 25000
mappedReadDepth expressedGenes
1 25000 11210
power5:
name powerDetect exp.probs power sampleSize totalCells
1 Blueprint (CLL) uCLL-iCLL 0.9900965 0.9900965 1 10 7000
usableCells multipletFraction ctCells readDepth readDepthSinglet
1 7000 7.67e-06 2100 25000 25000
mappedReadDepth expressedGenes
1 25000 11210