forked from sharib-vision/EndoCV2021-polyp_det_seg_gen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdet_metrics_voc.py
260 lines (232 loc) · 10.3 KB
/
det_metrics_voc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 9 14:12:16 2021
@author: endocv challenges
"""
import glob
import json
import os
import numpy as np
from misc import EndoCV_misc, BBType
class EndoCV_det:
def __init__(self, nclass, minOverlap = 0.25):
self.nclass = nclass
self.minOverlap = minOverlap
self.mAP = []
def voc_ap(rec, prec):
"""
--- Official matlab code VOC2012---
"""
rec.insert(0, 0.0)
rec.append(1.0)
mrec = rec[:]
prec.insert(0, 0.0)
prec.append(0.0)
mpre = prec[:]
"""
This part makes the precision monotonically decreasing
(goes from the end to the beginning)
"""
for i in range(len(mpre)-2, -1, -1):
mpre[i] = max(mpre[i], mpre[i+1])
"""
This part creates a list of indexes where the recall changes
"""
i_list = []
for i in range(1, len(mrec)):
if mrec[i] != mrec[i-1]:
i_list.append(i) # if it was matlab would be i + 1
"""
The Average Precision (AP) is the area under the curve
(numerical integration)
"""
ap = 0.0
for i in i_list:
ap += ((mrec[i]-mrec[i-1])*mpre[i])
return ap, mrec, mpre
def main_EndoCV2020(minOverlap, resultsfolder, gtfolder, predictfolder ):
if minOverlap == []:
minOverlap = EndoCV_det.minOverlap
tmp_files_path = "tmp_files"
if not os.path.exists(tmp_files_path): # if it doesn't exist already
os.makedirs(tmp_files_path, exist_ok=True)
results_files_path = resultsfolder
os.makedirs(results_files_path, exist_ok=True)
"""
Ground-Truth
Load each of the ground-truth files into a temporary ".json" file.
Create a list of all the class names present in the ground-truth (gt_classes).
"""
# get a list with the ground-truth files
ground_truth_files_list = glob.glob(os.path.join(gtfolder,'*.txt'))
if len(ground_truth_files_list) == 0:
EndoCV_misc.error("Error: No ground-truth files found!")
ground_truth_files_list.sort()
# dictionary with counter per class
gt_counter_per_class = {}
for txt_file in ground_truth_files_list:
#print(txt_file)
file_id = txt_file.split(".txt",1)[0]
file_id = os.path.basename(os.path.normpath(file_id))
# check if there is a correspondent predicted objects file
if not os.path.exists(os.path.join(predictfolder , file_id + ".txt")):
error_msg = "Error. File not found: predicted/" + file_id + ".txt\n"
# error_msg += "(You can avoid this error message by running extra/intersect-gt-and-pred.py)"
EndoCV_misc.error(error_msg)
lines_list = EndoCV_misc.file_lines_to_list(txt_file)
# create ground-truth dictionary
bounding_boxes = []
for line in lines_list:
try:
class_name, left, top, right, bottom = line.split()
except ValueError:
error_msg = "Error: File " + txt_file + " in the wrong format.\n"
error_msg += " Expected: <class_name> <left> <top> <right> <bottom>\n"
error_msg += " Received: " + line
error_msg += "\n\nIf you have a <class_name> with spaces between words you should remove them\n"
error_msg += "by running the script \"rename_class.py\" in the \"extra/\" folder."
EndoCV_misc.error(error_msg)
# check if class is in the ignore list, if yes skip
bbox = left + " " + top + " " + right + " " +bottom
bounding_boxes.append({"class_name":class_name, "bbox":bbox, "used":False})
# count that object
if class_name in gt_counter_per_class:
gt_counter_per_class[class_name] += 1
else:
# if class didn't exist yet
gt_counter_per_class[class_name] = 1
# dump bounding_boxes into a ".json" file
with open(os.path.join(tmp_files_path, file_id + "_ground_truth.json"), 'w') as outfile:
json.dump(bounding_boxes, outfile)
gt_classes = list(gt_counter_per_class.keys())
# let's sort the classes alphabetically
gt_classes = sorted(gt_classes)
n_classes = len(gt_classes)
"""
Predicted
Load each of the predicted files into a temporary ".json" file.
"""
# get a list with the predicted files
predicted_files_list = glob.glob(os.path.join(predictfolder, '*.txt'))
predicted_files_list.sort()
for class_index, class_name in enumerate(gt_classes):
bounding_boxes = []
for txt_file in predicted_files_list:
#print(txt_file)
# the first time it checks if all the corresponding ground-truth files exist
file_id = txt_file.split(".txt",1)[0]
file_id = os.path.basename(os.path.normpath(file_id))
if class_index == 0:
if not os.path.exists(os.path.join(gtfolder, file_id + ".txt")):
error_msg = "Error. File not found: ground-truth/" + file_id + ".txt\n"
# error_msg += "(You can avoid this error message by running extra/intersect-gt-and-pred.py)"
EndoCV_misc.error(error_msg)
lines = EndoCV_misc.file_lines_to_list(txt_file)
if lines==[]:
continue
else:
for line in lines:
try:
tmp_class_name, confidence, left, top, right, bottom = line.split()
except ValueError:
error_msg = "Error: File " + txt_file + " in the wrong format.\n"
error_msg += " Expected: <class_name> <confidence> <left> <top> <right> <bottom>\n"
error_msg += " Received: " + line
EndoCV_misc.error(error_msg)
if tmp_class_name == class_name:
#print("match")
bbox = left + " " + top + " " + right + " " +bottom
bounding_boxes.append({"confidence":confidence, "file_id":file_id, "bbox":bbox})
#print(bounding_boxes)
# sort predictions by decreasing confidence
bounding_boxes.sort(key=lambda x:x['confidence'], reverse=True)
with open(os.path.join(tmp_files_path, class_name + "_predictions.json"), 'w') as outfile:
json.dump(bounding_boxes, outfile)
"""
Calculate the AP for each class
"""
sum_AP = 0.0
ap_dictionary = {}
sum_iou = 0.0
iou_dictionary = {}
# open file to store the results
with open(os.path.join(results_files_path, "results.txt"), 'w') as results_file:
results_file.write("# AP and precision/recall per class\n")
count_true_positives = {}
for class_index, class_name in enumerate(gt_classes):
count_true_positives[class_name] = 0
"""
Load predictions of that class
"""
predictions_file = os.path.join(tmp_files_path, class_name + "_predictions.json")
predictions_data = json.load(open(predictions_file))
"""
Assign predictions to ground truth objects
"""
nd = len(predictions_data)
tp = [0] * nd # creates an array of zeros of size nd
fp = [0] * nd
iou = [0] * nd
for idx, prediction in enumerate(predictions_data):
file_id = prediction["file_id"]
gt_file = os.path.join(tmp_files_path, file_id + "_ground_truth.json")
ground_truth_data = json.load(open(gt_file))
ovmax = -1
gt_match = -1
# load prediction bounding-box
bb = [ float(x) for x in prediction["bbox"].split() ]
for obj in ground_truth_data:
# look for a class_name match
if obj["class_name"] == class_name:
bbgt = [ float(x) for x in obj["bbox"].split() ]
bi = [max(bb[0],bbgt[0]), max(bb[1],bbgt[1]), min(bb[2],bbgt[2]), min(bb[3],bbgt[3])]
iw = bi[2] - bi[0] + 1
ih = bi[3] - bi[1] + 1
if iw > 0 and ih > 0:
# compute overlap (IoU) = area of intersection / area of union
ua = (bb[2] - bb[0] + 1) * (bb[3] - bb[1] + 1) + (bbgt[2] - bbgt[0]
+ 1) * (bbgt[3] - bbgt[1] + 1) - iw * ih
ov = iw * ih / ua
if ov > ovmax:
ovmax = ov
gt_match = obj
# set minimum overlap
min_overlap = minOverlap
if ovmax >= min_overlap:
if not bool(gt_match["used"]):
# true positive
tp[idx] = 1
iou[idx] = ovmax
gt_match["used"] = True
count_true_positives[class_name] += 1
# update the ".json" file
with open(gt_file, 'w') as f:
f.write(json.dumps(ground_truth_data))
else:
fp[idx] = 1
else:
fp[idx] = 1
cumsum = 0
for idx, val in enumerate(fp):
fp[idx] += cumsum
cumsum += val
cumsum = 0
for idx, val in enumerate(tp):
tp[idx] += cumsum
cumsum += val
#print(tp)
rec = tp[:]
for idx, val in enumerate(tp):
rec[idx] = float(tp[idx]) / gt_counter_per_class[class_name]
prec = tp[:]
for idx, val in enumerate(tp):
prec[idx] = float(tp[idx]) / (fp[idx] + tp[idx])
ap, mrec, mprec = EndoCV_det.voc_ap(rec, prec)
sum_AP += ap
ap_dictionary[class_name] = ap
iou_dictionary[class_name] = np.mean(iou)
sum_iou += np.mean(iou)
mAP = sum_AP / n_classes
mIoU = sum_iou / n_classes
return mAP, mIoU, ap_dictionary