-
Notifications
You must be signed in to change notification settings - Fork 479
/
Copy pathtrain.py
110 lines (97 loc) · 3.54 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
"""
Train our RNN on extracted features or images.
"""
from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping, CSVLogger
from models import ResearchModels
from data import DataSet
import time
import os.path
def train(data_type, seq_length, model, saved_model=None,
class_limit=None, image_shape=None,
load_to_memory=False, batch_size=32, nb_epoch=100):
# Helper: Save the model.
checkpointer = ModelCheckpoint(
filepath=os.path.join('data', 'checkpoints', model + '-' + data_type + \
'.{epoch:03d}-{val_loss:.3f}.hdf5'),
verbose=1,
save_best_only=True)
# Helper: TensorBoard
tb = TensorBoard(log_dir=os.path.join('data', 'logs', model))
# Helper: Stop when we stop learning.
early_stopper = EarlyStopping(patience=5)
# Helper: Save results.
timestamp = time.time()
csv_logger = CSVLogger(os.path.join('data', 'logs', model + '-' + 'training-' + \
str(timestamp) + '.log'))
# Get the data and process it.
if image_shape is None:
data = DataSet(
seq_length=seq_length,
class_limit=class_limit
)
else:
data = DataSet(
seq_length=seq_length,
class_limit=class_limit,
image_shape=image_shape
)
# Get samples per epoch.
# Multiply by 0.7 to attempt to guess how much of data.data is the train set.
steps_per_epoch = (len(data.data) * 0.7) // batch_size
if load_to_memory:
# Get data.
X, y = data.get_all_sequences_in_memory('train', data_type)
X_test, y_test = data.get_all_sequences_in_memory('test', data_type)
else:
# Get generators.
generator = data.frame_generator(batch_size, 'train', data_type)
val_generator = data.frame_generator(batch_size, 'test', data_type)
# Get the model.
rm = ResearchModels(len(data.classes), model, seq_length, saved_model)
# Fit!
if load_to_memory:
# Use standard fit.
rm.model.fit(
X,
y,
batch_size=batch_size,
validation_data=(X_test, y_test),
verbose=1,
callbacks=[tb, early_stopper, csv_logger],
epochs=nb_epoch)
else:
# Use fit generator.
rm.model.fit_generator(
generator=generator,
steps_per_epoch=steps_per_epoch,
epochs=nb_epoch,
verbose=1,
callbacks=[tb, early_stopper, csv_logger, checkpointer],
validation_data=val_generator,
validation_steps=40,
workers=4)
def main():
"""These are the main training settings. Set each before running
this file."""
# model can be one of lstm, lrcn, mlp, conv_3d, c3d
model = 'lstm'
saved_model = None # None or weights file
class_limit = None # int, can be 1-101 or None
seq_length = 40
load_to_memory = False # pre-load the sequences into memory
batch_size = 32
nb_epoch = 1000
# Chose images or features and image shape based on network.
if model in ['conv_3d', 'c3d', 'lrcn']:
data_type = 'images'
image_shape = (80, 80, 3)
elif model in ['lstm', 'mlp']:
data_type = 'features'
image_shape = None
else:
raise ValueError("Invalid model. See train.py for options.")
train(data_type, seq_length, model, saved_model=saved_model,
class_limit=class_limit, image_shape=image_shape,
load_to_memory=load_to_memory, batch_size=batch_size, nb_epoch=nb_epoch)
if __name__ == '__main__':
main()