-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathtrain.py
428 lines (415 loc) · 18.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import os, time
import numpy as np
import torch
import torch.nn.functional as F
from sklearn.metrics import roc_auc_score, auc, precision_recall_curve
from skimage.measure import label, regionprops
from tqdm import tqdm
from visualize import *
from model import load_decoder_arch, load_encoder_arch, positionalencoding2d, activation
from utils import *
from custom_datasets import *
from custom_models import *
OUT_DIR = './viz/'
gamma = 0.0
theta = torch.nn.Sigmoid()
log_theta = torch.nn.LogSigmoid()
def train_meta_epoch(c, epoch, loader, encoder, decoders, optimizer, pool_layers, N):
P = c.condition_vec
L = c.pool_layers
decoders = [decoder.train() for decoder in decoders]
adjust_learning_rate(c, optimizer, epoch)
I = len(loader)
iterator = iter(loader)
for sub_epoch in range(c.sub_epochs):
train_loss = 0.0
train_count = 0
for i in range(I):
# warm-up learning rate
lr = warmup_learning_rate(c, epoch, i+sub_epoch*I, I*c.sub_epochs, optimizer)
# sample batch
try:
image, _, _ = next(iterator)
except StopIteration:
iterator = iter(loader)
image, _, _ = next(iterator)
# encoder prediction
image = image.to(c.device) # single scale
with torch.no_grad():
_ = encoder(image)
# train decoder
e_list = list()
c_list = list()
for l, layer in enumerate(pool_layers):
if 'vit' in c.enc_arch:
e = activation[layer].transpose(1, 2)[...,1:]
e_hw = int(np.sqrt(e.size(2)))
e = e.reshape(-1, e.size(1), e_hw, e_hw) # BxCxHxW
else:
e = activation[layer].detach() # BxCxHxW
#
B, C, H, W = e.size()
S = H*W
E = B*S
#
p = positionalencoding2d(P, H, W).to(c.device).unsqueeze(0).repeat(B, 1, 1, 1)
c_r = p.reshape(B, P, S).transpose(1, 2).reshape(E, P) # BHWxP
e_r = e.reshape(B, C, S).transpose(1, 2).reshape(E, C) # BHWxC
perm = torch.randperm(E).to(c.device) # BHW
decoder = decoders[l]
#
FIB = E//N # number of fiber batches
assert FIB > 0, 'MAKE SURE WE HAVE ENOUGH FIBERS, otherwise decrease N or batch-size!'
for f in range(FIB): # per-fiber processing
idx = torch.arange(f*N, (f+1)*N)
c_p = c_r[perm[idx]] # NxP
e_p = e_r[perm[idx]] # NxC
if 'cflow' in c.dec_arch:
z, log_jac_det = decoder(e_p, [c_p,])
else:
z, log_jac_det = decoder(e_p)
#
decoder_log_prob = get_logp(C, z, log_jac_det)
log_prob = decoder_log_prob / C # likelihood per dim
loss = -log_theta(log_prob)
optimizer.zero_grad()
loss.mean().backward()
optimizer.step()
train_loss += t2np(loss.sum())
train_count += len(loss)
#
mean_train_loss = train_loss / train_count
if c.verbose:
print('Epoch: {:d}.{:d} \t train loss: {:.4f}, lr={:.6f}'.format(epoch, sub_epoch, mean_train_loss, lr))
#
def test_meta_epoch(c, epoch, loader, encoder, decoders, pool_layers, N):
# test
if c.verbose:
print('\nCompute loss and scores on test set:')
#
P = c.condition_vec
decoders = [decoder.eval() for decoder in decoders]
height = list()
width = list()
image_list = list()
gt_label_list = list()
gt_mask_list = list()
test_dist = [list() for layer in pool_layers]
test_loss = 0.0
test_count = 0
start = time.time()
with torch.no_grad():
for i, (image, label, mask) in enumerate(tqdm(loader, disable=c.hide_tqdm_bar)):
# save
if c.viz:
image_list.extend(t2np(image))
gt_label_list.extend(t2np(label))
gt_mask_list.extend(t2np(mask))
# data
image = image.to(c.device) # single scale
_ = encoder(image) # BxCxHxW
# test decoder
e_list = list()
for l, layer in enumerate(pool_layers):
if 'vit' in c.enc_arch:
e = activation[layer].transpose(1, 2)[...,1:]
e_hw = int(np.sqrt(e.size(2)))
e = e.reshape(-1, e.size(1), e_hw, e_hw) # BxCxHxW
else:
e = activation[layer] # BxCxHxW
#
B, C, H, W = e.size()
S = H*W
E = B*S
#
if i == 0: # get stats
height.append(H)
width.append(W)
#
p = positionalencoding2d(P, H, W).to(c.device).unsqueeze(0).repeat(B, 1, 1, 1)
c_r = p.reshape(B, P, S).transpose(1, 2).reshape(E, P) # BHWxP
e_r = e.reshape(B, C, S).transpose(1, 2).reshape(E, C) # BHWxC
#
m = F.interpolate(mask, size=(H, W), mode='nearest')
m_r = m.reshape(B, 1, S).transpose(1, 2).reshape(E, 1) # BHWx1
#
decoder = decoders[l]
FIB = E//N + int(E%N > 0) # number of fiber batches
for f in range(FIB):
if f < (FIB-1):
idx = torch.arange(f*N, (f+1)*N)
else:
idx = torch.arange(f*N, E)
#
c_p = c_r[idx] # NxP
e_p = e_r[idx] # NxC
m_p = m_r[idx] > 0.5 # Nx1
#
if 'cflow' in c.dec_arch:
z, log_jac_det = decoder(e_p, [c_p,])
else:
z, log_jac_det = decoder(e_p)
#
decoder_log_prob = get_logp(C, z, log_jac_det)
log_prob = decoder_log_prob / C # likelihood per dim
loss = -log_theta(log_prob)
test_loss += t2np(loss.sum())
test_count += len(loss)
test_dist[l] = test_dist[l] + log_prob.detach().cpu().tolist()
#
fps = len(loader.dataset) / (time.time() - start)
mean_test_loss = test_loss / test_count
if c.verbose:
print('Epoch: {:d} \t test_loss: {:.4f} and {:.2f} fps'.format(epoch, mean_test_loss, fps))
#
return height, width, image_list, test_dist, gt_label_list, gt_mask_list
def test_meta_fps(c, epoch, loader, encoder, decoders, pool_layers, N):
# test
if c.verbose:
print('\nCompute loss and scores on test set:')
#
P = c.condition_vec
decoders = [decoder.eval() for decoder in decoders]
height = list()
width = list()
image_list = list()
gt_label_list = list()
gt_mask_list = list()
test_dist = [list() for layer in pool_layers]
test_loss = 0.0
test_count = 0
A = len(loader.dataset)
with torch.no_grad():
# warm-up
for i, (image, _, _) in enumerate(tqdm(loader, disable=c.hide_tqdm_bar)):
# data
image = image.to(c.device) # single scale
_ = encoder(image) # BxCxHxW
# measure encoder only
torch.cuda.synchronize()
start = time.time()
for i, (image, _, _) in enumerate(tqdm(loader, disable=c.hide_tqdm_bar)):
# data
image = image.to(c.device) # single scale
_ = encoder(image) # BxCxHxW
# measure encoder + decoder
torch.cuda.synchronize()
time_enc = time.time() - start
start = time.time()
for i, (image, _, _) in enumerate(tqdm(loader, disable=c.hide_tqdm_bar)):
# data
image = image.to(c.device) # single scale
_ = encoder(image) # BxCxHxW
# test decoder
e_list = list()
for l, layer in enumerate(pool_layers):
if 'vit' in c.enc_arch:
e = activation[layer].transpose(1, 2)[...,1:]
e_hw = int(np.sqrt(e.size(2)))
e = e.reshape(-1, e.size(1), e_hw, e_hw) # BxCxHxW
else:
e = activation[layer] # BxCxHxW
#
B, C, H, W = e.size()
S = H*W
E = B*S
#
if i == 0: # get stats
height.append(H)
width.append(W)
#
p = positionalencoding2d(P, H, W).to(c.device).unsqueeze(0).repeat(B, 1, 1, 1)
c_r = p.reshape(B, P, S).transpose(1, 2).reshape(E, P) # BHWxP
e_r = e.reshape(B, C, S).transpose(1, 2).reshape(E, C) # BHWxC
#
decoder = decoders[l]
FIB = E//N + int(E%N > 0) # number of fiber batches
for f in range(FIB):
if f < (FIB-1):
idx = torch.arange(f*N, (f+1)*N)
else:
idx = torch.arange(f*N, E)
#
c_p = c_r[idx] # NxP
e_p = e_r[idx] # NxC
#
if 'cflow' in c.dec_arch:
z, log_jac_det = decoder(e_p, [c_p,])
else:
z, log_jac_det = decoder(e_p)
#
torch.cuda.synchronize()
time_all = time.time() - start
fps_enc = A / time_enc
fps_all = A / time_all
print('Encoder/All {:.2f}/{:.2f} fps'.format(fps_enc, fps_all))
#
return height, width, image_list, test_dist, gt_label_list, gt_mask_list
def train(c):
run_date = datetime.datetime.now().strftime("%Y-%m-%d-%H:%M:%S")
L = c.pool_layers # number of pooled layers
print('Number of pool layers =', L)
encoder, pool_layers, pool_dims = load_encoder_arch(c, L)
encoder = encoder.to(c.device).eval()
#print(encoder)
# NF decoder
decoders = [load_decoder_arch(c, pool_dim) for pool_dim in pool_dims]
decoders = [decoder.to(c.device) for decoder in decoders]
params = list(decoders[0].parameters())
for l in range(1, L):
params += list(decoders[l].parameters())
# optimizer
optimizer = torch.optim.Adam(params, lr=c.lr)
# data
kwargs = {'num_workers': c.workers, 'pin_memory': True} if c.use_cuda else {}
# task data
if c.dataset == 'mvtec':
train_dataset = MVTecDataset(c, is_train=True)
test_dataset = MVTecDataset(c, is_train=False)
elif c.dataset == 'stc':
train_dataset = StcDataset(c, is_train=True)
test_dataset = StcDataset(c, is_train=False)
else:
raise NotImplementedError('{} is not supported dataset!'.format(c.dataset))
#
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=c.batch_size, shuffle=True, drop_last=True, **kwargs)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=c.batch_size, shuffle=False, drop_last=False, **kwargs)
N = 256 # hyperparameter that increases batch size for the decoder model by N
print('train/test loader length', len(train_loader.dataset), len(test_loader.dataset))
print('train/test loader batches', len(train_loader), len(test_loader))
# stats
det_roc_obs = Score_Observer('DET_AUROC')
seg_roc_obs = Score_Observer('SEG_AUROC')
seg_pro_obs = Score_Observer('SEG_AUPRO')
if c.action_type == 'norm-test':
c.meta_epochs = 1
for epoch in range(c.meta_epochs):
if c.action_type == 'norm-test' and c.checkpoint:
load_weights(encoder, decoders, c.checkpoint)
elif c.action_type == 'norm-train':
print('Train meta epoch: {}'.format(epoch))
train_meta_epoch(c, epoch, train_loader, encoder, decoders, optimizer, pool_layers, N)
else:
raise NotImplementedError('{} is not supported action type!'.format(c.action_type))
#height, width, test_image_list, test_dist, gt_label_list, gt_mask_list = test_meta_fps(
# c, epoch, test_loader, encoder, decoders, pool_layers, N)
height, width, test_image_list, test_dist, gt_label_list, gt_mask_list = test_meta_epoch(
c, epoch, test_loader, encoder, decoders, pool_layers, N)
# PxEHW
print('Heights/Widths', height, width)
test_map = [list() for p in pool_layers]
for l, p in enumerate(pool_layers):
test_norm = torch.tensor(test_dist[l], dtype=torch.double) # EHWx1
test_norm-= torch.max(test_norm) # normalize likelihoods to (-Inf:0] by subtracting a constant
test_prob = torch.exp(test_norm) # convert to probs in range [0:1]
test_mask = test_prob.reshape(-1, height[l], width[l])
test_mask = test_prob.reshape(-1, height[l], width[l])
# upsample
test_map[l] = F.interpolate(test_mask.unsqueeze(1),
size=c.crp_size, mode='bilinear', align_corners=True).squeeze().numpy()
# score aggregation
score_map = np.zeros_like(test_map[0])
for l, p in enumerate(pool_layers):
score_map += test_map[l]
score_mask = score_map
# invert probs to anomaly scores
super_mask = score_mask.max() - score_mask
# calculate detection AUROC
score_label = np.max(super_mask, axis=(1, 2))
gt_label = np.asarray(gt_label_list, dtype=bool)
det_roc_auc = roc_auc_score(gt_label, score_label)
_ = det_roc_obs.update(100.0*det_roc_auc, epoch)
# calculate segmentation AUROC
gt_mask = np.squeeze(np.asarray(gt_mask_list, dtype=bool), axis=1)
seg_roc_auc = roc_auc_score(gt_mask.flatten(), super_mask.flatten())
save_best_seg_weights = seg_roc_obs.update(100.0*seg_roc_auc, epoch)
if save_best_seg_weights and c.action_type != 'norm-test':
save_weights(encoder, decoders, c.model, run_date) # avoid unnecessary saves
# calculate segmentation AUPRO
# from https://github.com/YoungGod/DFR:
if c.pro: # and (epoch % 4 == 0): # AUPRO is expensive to compute
max_step = 1000
expect_fpr = 0.3 # default 30%
max_th = super_mask.max()
min_th = super_mask.min()
delta = (max_th - min_th) / max_step
ious_mean = []
ious_std = []
pros_mean = []
pros_std = []
threds = []
fprs = []
binary_score_maps = np.zeros_like(super_mask, dtype=bool)
for step in range(max_step):
thred = max_th - step * delta
# segmentation
binary_score_maps[super_mask <= thred] = 0
binary_score_maps[super_mask > thred] = 1
pro = [] # per region overlap
iou = [] # per image iou
# pro: find each connected gt region, compute the overlapped pixels between the gt region and predicted region
# iou: for each image, compute the ratio, i.e. intersection/union between the gt and predicted binary map
for i in range(len(binary_score_maps)): # for i th image
# pro (per region level)
label_map = label(gt_mask[i], connectivity=2)
props = regionprops(label_map)
for prop in props:
x_min, y_min, x_max, y_max = prop.bbox # find the bounding box of an anomaly region
cropped_pred_label = binary_score_maps[i][x_min:x_max, y_min:y_max]
# cropped_mask = gt_mask[i][x_min:x_max, y_min:y_max] # bug!
cropped_mask = prop.filled_image # corrected!
intersection = np.logical_and(cropped_pred_label, cropped_mask).astype(np.float32).sum()
pro.append(intersection / prop.area)
# iou (per image level)
intersection = np.logical_and(binary_score_maps[i], gt_mask[i]).astype(np.float32).sum()
union = np.logical_or(binary_score_maps[i], gt_mask[i]).astype(np.float32).sum()
if gt_mask[i].any() > 0: # when the gt have no anomaly pixels, skip it
iou.append(intersection / union)
# against steps and average metrics on the testing data
ious_mean.append(np.array(iou).mean())
#print("per image mean iou:", np.array(iou).mean())
ious_std.append(np.array(iou).std())
pros_mean.append(np.array(pro).mean())
pros_std.append(np.array(pro).std())
# fpr for pro-auc
gt_masks_neg = ~gt_mask
fpr = np.logical_and(gt_masks_neg, binary_score_maps).sum() / gt_masks_neg.sum()
fprs.append(fpr)
threds.append(thred)
# as array
threds = np.array(threds)
pros_mean = np.array(pros_mean)
pros_std = np.array(pros_std)
fprs = np.array(fprs)
ious_mean = np.array(ious_mean)
ious_std = np.array(ious_std)
# best per image iou
best_miou = ious_mean.max()
#print(f"Best IOU: {best_miou:.4f}")
# default 30% fpr vs pro, pro_auc
idx = fprs <= expect_fpr # find the indexs of fprs that is less than expect_fpr (default 0.3)
fprs_selected = fprs[idx]
fprs_selected = rescale(fprs_selected) # rescale fpr [0,0.3] -> [0, 1]
pros_mean_selected = pros_mean[idx]
seg_pro_auc = auc(fprs_selected, pros_mean_selected)
_ = seg_pro_obs.update(100.0*seg_pro_auc, epoch)
#
save_results(det_roc_obs, seg_roc_obs, seg_pro_obs, c.model, c.class_name, run_date)
# export visualuzations
if c.viz:
precision, recall, thresholds = precision_recall_curve(gt_label, score_label)
a = 2 * precision * recall
b = precision + recall
f1 = np.divide(a, b, out=np.zeros_like(a), where=b != 0)
det_threshold = thresholds[np.argmax(f1)]
print('Optimal DET Threshold: {:.2f}'.format(det_threshold))
precision, recall, thresholds = precision_recall_curve(gt_mask.flatten(), super_mask.flatten())
a = 2 * precision * recall
b = precision + recall
f1 = np.divide(a, b, out=np.zeros_like(a), where=b != 0)
seg_threshold = thresholds[np.argmax(f1)]
print('Optimal SEG Threshold: {:.2f}'.format(seg_threshold))
export_groundtruth(c, test_image_list, gt_mask)
export_scores(c, test_image_list, super_mask, seg_threshold)
export_test_images(c, test_image_list, gt_mask, super_mask, seg_threshold)
export_hist(c, gt_mask, super_mask, seg_threshold)