-
Notifications
You must be signed in to change notification settings - Fork 128
/
w2v_utils.py
155 lines (128 loc) · 4.92 KB
/
w2v_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense, Reshape
from tensorflow.keras.layers import Embedding
from tensorflow.keras.preprocessing.sequence import skipgrams
from tensorflow.keras.preprocessing import sequence
import urllib.request
import collections
import os
import zipfile
import numpy as np
import tensorflow as tf
window_size = 3
vector_dim = 300
epochs = 1000
valid_size = 16 # Random set of words to evaluate similarity on.
valid_window = 100 # Only pick dev samples in the head of the distribution.
valid_examples = np.random.choice(valid_window, valid_size, replace=False)
def maybe_download(filename, url, expected_bytes):
"""Download a file if not present, and make sure it's the right size."""
if not os.path.exists(filename):
filename, _ = urllib.request.urlretrieve(url + filename, filename)
statinfo = os.stat(filename)
if statinfo.st_size == expected_bytes:
print('Found and verified', filename)
else:
print(statinfo.st_size)
raise Exception(
'Failed to verify ' + filename + '. Can you get to it with a browser?')
return filename
# Read the data into a list of strings.
def read_data(filename):
"""Extract the first file enclosed in a zip file as a list of words."""
with zipfile.ZipFile(filename) as f:
data = tf.compat.as_str(f.read(f.namelist()[0])).split()
return data
def build_dataset(words, n_words):
"""Process raw inputs into a dataset."""
count = [['UNK', -1]]
count.extend(collections.Counter(words).most_common(n_words - 1))
dictionary = dict()
for word, _ in count:
dictionary[word] = len(dictionary)
data = list()
unk_count = 0
for word in words:
if word in dictionary:
index = dictionary[word]
else:
index = 0 # dictionary['UNK']
unk_count += 1
data.append(index)
count[0][1] = unk_count
reversed_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
return data, count, dictionary, reversed_dictionary
def collect_data(vocabulary_size=10000):
url = 'http://mattmahoney.net/dc/'
filename = maybe_download('text8.zip', url, 31344016)
vocabulary = read_data(filename)
print(vocabulary[:7])
data, count, dictionary, reverse_dictionary = build_dataset(vocabulary,
vocabulary_size)
del vocabulary # Hint to reduce memory.
return data, count, dictionary, reverse_dictionary
class SimilarityCallback:
def run_sim(self):
for i in range(valid_size):
valid_word = reverse_dictionary[valid_examples[i]]
top_k = 8 # number of nearest neighbors
sim = self._get_sim(valid_examples[i])
nearest = (-sim).argsort()[1:top_k + 1]
log_str = 'Nearest to %s:' % valid_word
for k in range(top_k):
close_word = reverse_dictionary[nearest[k]]
log_str = '%s %s,' % (log_str, close_word)
print(log_str)
@staticmethod
def _get_sim(valid_word_idx):
sim = np.zeros((vocab_size,))
in_arr1 = np.zeros((1,))
in_arr2 = np.zeros((1,))
in_arr1[0,] = valid_word_idx
for i in range(vocab_size):
in_arr2[0,] = i
out = validation_model.predict_on_batch([in_arr1, in_arr2])
sim[i] = out
return sim
def read_glove_vecs(glove_file):
with open(glove_file, 'r') as f:
words = set()
word_to_vec_map = {}
for line in f:
line = line.strip().split()
curr_word = line[0]
words.add(curr_word)
word_to_vec_map[curr_word] = np.array(line[1:], dtype=np.float64)
return words, word_to_vec_map
def relu(x):
"""
Compute the relu of x
Arguments:
x -- A scalar or numpy array of any size.
Return:
s -- relu(x)
"""
s = np.maximum(0,x)
return s
def initialize_parameters(vocab_size, n_h):
"""
Arguments:
layer_dims -- python array (list) containing the dimensions of each layer in our network
Returns:
parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2":
W1 -- weight matrix of shape (n_h, vocab_size)
b1 -- bias vector of shape (n_h, 1)
W2 -- weight matrix of shape (vocab_size, n_h)
b2 -- bias vector of shape (vocab_size, 1)
"""
np.random.seed(3)
parameters = {}
parameters['W1'] = np.random.randn(n_h, vocab_size) / np.sqrt(vocab_size)
parameters['b1'] = np.zeros((n_h, 1))
parameters['W2'] = np.random.randn(vocab_size, n_h) / np.sqrt(n_h)
parameters['b2'] = np.zeros((vocab_size, 1))
return parameters
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum()