-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript.py
416 lines (306 loc) · 17.5 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
"""Solid Waste Assessment Tool
This script will compute two statistics: the amount of solid waste generated per week per municipal jurisdiction (in metric tonnes), and the amount of uncollected solid waste generated by 'service area', i.e. the area of a jurisdiction for which a service provider (e.g. contractor or municipal department) provides solid waste collection services.
Required source files
The script requires three source files:
(1) a vector source indicating the administrative boundaries for both a first sub-national government tier (e.g. the state level) and a second tier (e.g. the municipal level):
- this sample script uses the administrative boundaries for Nigeria available here: https://data.humdata.org/dataset/nga-administrative-boundaries#;;
(2) a vector source representing service areas including an attribute field or column indicating the total amount of solid waste collected per week by each contractor/service provider in metric tonnes ('total_coll'):
- the template below uses dummy polygons and collection totals assuming a 21% collection rate. A second shapefile containing dummy data for Ogun State is available in the `data_files` folder as well. Switch between Lagos and Ogun in the drop-down menu to demonstrate how the script can be quickly run on any jurisdiction; A
(3) the pop GeoTIFF of a CIESIN High-Resolution Settlements Layer providing the number of persons estimated to live in each 1 arc-second pixel (2015 data) or a GPW layer at 30 arc-seconds resolution (2000-2020 data)
- the template below uses the HRSL for Nigeria available at https://ciesin.columbia.edu/data/hrsl/#data ;
Outputs
The script will return three outputs:
(1) a list of municipalities by amount of solid waste generated per week in metric tonnes, in descending order;
(2) a list of service providers by amount of uncollected solid waste per week in metric tonnes, in descending order;
(3) choropleth maps visualizing each list using a scalar colormap (blues for (1) and reds for (2)).
A drop-down menu allows for selecting superordinate jurisdictions from a list. The assumption on the amount of solid waste produced per capita per day can be adjusted by way of an interactive slider widget. Results are then updated in real-time.
"""
import numpy as np
import pandas as pd
import geopandas as gpd
import cartopy.crs as ccrs
from cartopy.feature import ShapelyFeature
import rasterio as rio
from rasterstats import zonal_stats
import matplotlib.pyplot as plt
from ipywidgets import interact
import time
import functools
def timer(func):
"""Print runtime of decorated function"""
@functools.wraps(func)
def wrapper_timer(*args, **kwargs):
start_time = time.perf_counter() #1
value = func(*args, **kwargs)
end_time = time.perf_counter() #2
run_time = end_time - start_time #3
print(f"\nFinished {func.__name__!r} in {run_time:.4f} secs")
return value
return wrapper_timer
def getVector(fp_adm, fp_service_areas, state_name_field, state_select='Lagos'):
"""Returns a subset of vector features and the bounding box (study area).
Parameters
----------
fp_adm : str
File path for the administrative boundaries vector source.
fp_service_areas : str
File path for the service areas vector source.
state_name_field : str
The name of the column containing names of superordinate jurisdictions.
state_select : str
The name of the superordinate jurisdiction (state) for which to conduct the analysis.
Returns
----------
municipal_filter : GeoDataFrame
GDF of the jurisdictions.
bbox : ndarray
Bounding box of the study area.
service_areas : GeoDataFrame
GDF of the service areas
"""
# LOAD ADMINISTRATIVE BOUNDARIES VECTOR DATA
# load Nigeria Local Government Area boundaries (Level 2, 'ADM2_EN'), and select only those LGAS within the larger Lagos State administrative boundary (Level 1, 'ADM1_EN')
municipal_all = gpd.read_file(fp_adm)
municipal_filter = municipal_all[municipal_all[state_name_field] == state_select]
# Somehow feed to interact() for drop-down: state_list = sorted(municipal_all[state_name_field].unique().tolist())
# DEFINE STUDY AREA BASED ON VECTOR SELECTION
bbox = municipal_filter.total_bounds
# LOAD VECTOR DATA FOR SERVICE AREAS OF SOLID WASTE SERVICE PROVIDERS
# service_areas = gpd.read_file(fp_service_areas).to_crs(crs)
service_areas = gpd.read_file(fp_service_areas)
return municipal_filter, bbox, service_areas
def computeArray(fp_raster, bbox, sw_ppd):
"""Returns the nd array, affine and nodata variables required for zonal_stats.
Parameters
----------
fp_raster : str
File path to the HRSL or GWP raster source.
bbox : nd array
Bounding box of the study area.
sw_ppw : float
The amount of solid waste generated per capita per day.
Returns
----------
array : nd array
Array representing the amount of solid waste produce per pixel per week in metric tonnes.
affine : Affine
Affine transformation for the study area.
nodata : type depends on raster source
The NoData value of the raster source.
"""
# 1. LOAD HIGH RESOLUTION SETTLEMENTS LAYER
# Continuous floating point raster layer by CIESIN representing number of persons per 30x30m grid cell
# Sample: Nigeria
with rio.open(fp_raster) as dataset:
# read CRS and no data attributes, create Window object
crs = dataset.crs
nodata = dataset.nodata
window = dataset.window(*bbox)
# CREATE NUMPY ND ARRAYS
# load a subset of the HRSL corresponding to the study area
pop_array = dataset.read(1, window=window)
affine = dataset.window_transform(window)
pop_array[(pop_array < 0)] = np.nan # sets negative NoData values to NaN to enable array algebra
# Calculate tons of solid waste produced per grid cell rson per week
sw_ppd_array = pop_array * sw_ppd # converts population to solid waste per person and day
sw_ppw_array = sw_ppd_array * 7 # converts daily to weekly figures
array = sw_ppw_array / 1000 # converts kilograms to tons per week (TPW)
return array, affine, nodata
def zonalStats(municipal_filter, service_areas, array, affine, nodata, stat_select, mun_name_field, provider_name_field):
"""Returns one list each of feature names and zonal statistics.
Parameters
----------
municipal_filter : GeoDataFrame
GDF of the jurisdictions.
service_areas : GeoDataFrame
GDF of the service areas
array : nd array
Array representing the amount of solid waste produce per pixel per week in metric tonnes.
affine : Affine
Affine transformation for the study area.
nodata : type depends on raster source
The NoData value of the raster source.
stat_select : str
The statistic to be computed (default is 'sum')
mun_name_field : str
The name of the column containing the names of subordinate jurisdictions.
provider_name_field : str
The name of the column containing the names of service providers.
Returns
----------
mun_names : list
List of names of subordinate jurisdictions.
mun_stats : list
List of zonal statistics for subordinate jurisdictions.
provider_names : list
List of names of service providers
provider_stats : list
List of zonal statistics for service providers.
"""
def getNamesStats(vector, array, name_field, feature_list, stat_list, stat_select='sum'):
"""Returns one list each of feature names and zonal statistics.
Parameters
----------
vector : path to a vector source or geo-like python object
Python object can be a GeoPandas GeoDataFrame.
raster : ndarray
rasterstats alternative arg, 'path to a GDAL raster', not accepted.
name_field : str
The vector source's column name containing feature names.
feature_list : str
Temp variable name for feature list. Must be unique in script as run consecutively.
stat_list : str
Temp variable name for statistics list. Must be unique in script.
stat_select : str, optional
String value for any statistic supported by zonal_stats (the default is 'sum').
Returns
----------
feature_list : list
A list in alphabetical order containing the names of polygon features for which zonal stats are computed.
stat_list : list
A list containing the zonal statistics in the same order as "feature_list".
"""
temp = zonal_stats(vector, array, affine=affine, nodata=nodata, stats=stat_select, geojson_out=True)
for feature_dict in temp:
feature_name = feature_dict['properties'][name_field]
feature_stat = feature_dict['properties'][stat_select]
feature_list.append(feature_name)
stat_list.append(feature_stat)
# CALCULATE ZONAL STATS - BASELINE GENERATION PER MUNICIPALITY
# empty lists of all polygon names and zonal stats to be populated by function
mun_names = []
mun_stats = []
getNamesStats(municipal_filter, array, mun_name_field, mun_names, mun_stats)
# CALCULATE ZONAL STATS - SOLID WASTE COLLECTED PER SERVICE AREA
provider_names = []
provider_stats = []
getNamesStats(service_areas, array, provider_name_field, provider_names, provider_stats)
return mun_names, mun_stats, provider_names, provider_stats
def processStats(service_areas, mun_names, mun_stats, provider_names, provider_stats, provider_coll_field):
"""Prints two rank-ordered lists and returns two lists of ordered tuples.
Parameters
----------
service_areas : GeoDataFrame
GDF of the service areas
mun_names : list
List of names of subordinate jurisdictions.
mun_stats : list
List of zonal statistics for subordinate jurisdictions.
provider_names : list
List of names of service providers
provider_stats : list
List of zonal statistics for service providers.
provider_coll_field : str
Name of the column containing the recorded collection totals for each service provider.
Returns
----------
mun_dict_sorted : list
List of name-stat tuples for subordinate jurisdictions.
provider_dict_sorted : list
List of name-stat tuples for service providers.
"""
# extract total collection values and subtract the total waste generated in each service area
provider_coll = service_areas[provider_coll_field].values.tolist()
zip_object = zip(provider_stats, provider_coll)
provider_uncoll = []
for i, j in zip_object:
provider_uncoll.append(i - j)
# ORGANISE AND PRINT RESULTS
# combine populated lists into dictionaries
mun_dict = dict(zip(mun_names, mun_stats))
provider_dict = dict(zip(provider_names, provider_uncoll))
# sort dictionaries by value in descending order into list of tuples
mun_dict_sorted = sorted(mun_dict.items(), key=lambda x: x[1], reverse=True)
provider_dict_sorted = sorted(provider_dict.items(), key=lambda x: x[1], reverse=True)
# print the items in the sorted list of tuples
print('Municipalities by solid waste generated per week (descending):\n')
[print(i[0],':',f"{int(i[1]):,}", 'tonnes') for i in mun_dict_sorted]
print('\nService providers by total uncollected solid waste per week (descending)\n')
[print(i[0],':',f"{int(i[1]):,}", 'tonnes') for i in provider_dict_sorted]
return mun_dict_sorted, provider_dict_sorted
@timer
def main(state_list='Lagos', sw_ppd=(0.4, 1.2, 0.1)):
"""Executes all functions, adds zonal stats to GDFs and plots results on a subplot each.
The majority of hard coded user inputs are declared as enclosing scope variables here.
Parameters
----------
state_list : str or list
Setting the default string value in the function definition causes this state to be active on-load. This is useful when service area source files are not available for all states (selecting such a state will cause and OpenFailedError). When interact() is executed, the list of states is passed to main().
sw_ppd : tuple
Floats for min, max and step controlling the ipywidgets slider
"""
# USER INPUT 1: Enclosing Scope Variables
# equates the element from the list passed to main() by interact() with state_select
state_select = state_list
# indicate the name of the column containing the names of municipalities
mun_name_field = 'ADM2_EN'
# indicating the filepath to the service areas data source(s)
fp_service_areas = 'data_files/01_input/01_vector/service_areas_' + state_select.lower() + '.shp'
# indicating the name of the column containing the names of service providers;
provider_name_field = 'psp_name'
# indicate the name of the column containing the weekly collection totals reported
provider_coll_field = 'total_coll'
# indicate the filepath to the raster data source;
fp_raster = 'data_files/01_input/02_raster/hrsl_nga_pop.tif'
# OPTIONAL CUSTOMIZATIONS
# the rasterstats zonal statistic to be computed for each jurisdiction (default is 'sum')
stat_select = 'sum'
# If adjusting 'stat_select', also adjust the title of the choropleth maps accordingly
var_name = 'Tonnes of solid waste generated per week'
# EXECUTE FUNCTIONS
municipal_filter, bbox, service_areas = getVector(fp_adm, fp_service_areas, state_name_field, state_select)
array, affine, nodata = computeArray(fp_raster, bbox, sw_ppd)
mun_names, mun_stats, provider_names, provider_stats = zonalStats(municipal_filter, service_areas, array, affine, nodata, stat_select, mun_name_field, provider_name_field)
mun_dict_sorted, provider_dict_sorted = processStats(service_areas, mun_names, mun_stats, provider_names, provider_stats, provider_coll_field)
# UPDATE GEODATAFRAMES WITH RESULTS
# Assign zonal statistics to new columns
# 'stat_output' for municipal_filter GDF and 'total_uncoll' for service_areas GDF
# using two different methods
municipal_filter = municipal_filter.assign(
stat_output = pd.Series(mun_stats, index = municipal_filter.index)
)
for i, row in service_areas.iterrows():
service_areas.loc[i, 'total_uncoll'] = provider_stats[i] - row[provider_coll_field]
# PLOT RESULTS ON CHOROPLETH MAPS
# Define figure CRS and canvas layout
myCRS = ccrs.Mercator()
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 7.5), subplot_kw=dict(projection=myCRS))
# --Subplot 1--
# add municipal boundaries
municipal_feat = ShapelyFeature(municipal_filter['geometry'], myCRS, facecolor='none', edgecolor='k', linewidth=0.5)
ax1.add_feature(municipal_feat)
# add dynamic title and annotation
title = var_name + ' by municipalities in ' + state_select + ' State'
ax1.set_title(title, fontdict={'fontsize': '12', 'fontweight' : '5'})
ax1.axis('off')
ax1.annotate('Source: CIESIN HRSL, assuming ' + str(sw_ppd) + 'kg of solid waste per capita per day', xy=(0.225, .025), xycoords='figure fraction', fontsize=12, color='#555555')
# create colorbar legend
vmin, vmax = municipal_filter['stat_output'].min(), municipal_filter['stat_output'].max()
sm = plt.cm.ScalarMappable(cmap='Blues', norm=plt.Normalize(vmin=vmin, vmax=vmax))
sm.set_array([])
fig.colorbar(sm, ax=ax1, orientation="horizontal")
municipal_filter.plot(column='stat_output', cmap='Blues', linewidth=0.8, ax=ax1, edgecolor='0.8')
# --Sub-plot 2--
# add dynamic title and annotation
title2 = 'Tonnes of uncollected solid waste per week by service area (dummy data)'
ax2.set_title(title2, fontdict={'fontsize': '12', 'fontweight' : '5'})
ax2.axis('off')
# Create colorbar legend
vmin2, vmax2 = service_areas['total_uncoll'].min(), service_areas['total_uncoll'].max()
sm = plt.cm.ScalarMappable(cmap='Reds', norm=plt.Normalize(vmin=vmin2, vmax=vmax2))
sm.set_array([])
fig.colorbar(sm, ax=ax2, orientation="horizontal")
municipal_filter.plot(facecolor='none', linewidth=0.5, ax=ax2, edgecolor='k')
service_areas.plot(column='total_uncoll', cmap='Reds', linewidth=0.8, ax=ax2, edgecolor='k')
if __name__ == "__main__":
# USER INPUTS 2: Global Scope Variables
# this set of variables is declared globally to make state_list accessible to interact()
fp_adm = 'data_files/01_input/01_vector/nga_admbnda_adm2_osgof_20190417.shp'
# indicate the name of the column indicating the names of the superordinate (e.g. state-level) jurisdictions
# If this information is in a data source separate from the subordinate tier,
# a spatial join via GeoPandas or a desktop GIS may be necessary
state_name_field = 'ADM1_EN'
# variables declared to be passed to interact()
municipal_all = gpd.read_file(fp_adm)
state_list = sorted(municipal_all[state_name_field].unique().tolist())
interact(main, state_list=state_list)