forked from princeton-vl/DPVO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
171 lines (128 loc) · 5.23 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import cv2
import os
import argparse
import numpy as np
from collections import OrderedDict
import matplotlib.pyplot as plt
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from dpvo.data_readers.factory import dataset_factory
from dpvo.lietorch import SE3
from dpvo.logger import Logger
import torch.nn.functional as F
from dpvo.net import VONet
from evaluate_tartan import evaluate as validate
def show_image(image):
image = image.permute(1, 2, 0).cpu().numpy()
cv2.imshow('image', image / 255.0)
cv2.waitKey()
def image2gray(image):
image = image.mean(dim=0).cpu().numpy()
cv2.imshow('image', image / 255.0)
cv2.waitKey()
def kabsch_umeyama(A, B):
n, m = A.shape
EA = torch.mean(A, axis=0)
EB = torch.mean(B, axis=0)
VarA = torch.mean((A - EA).norm(dim=1)**2)
H = ((A - EA).T @ (B - EB)) / n
U, D, VT = torch.svd(H)
c = VarA / torch.trace(torch.diag(D))
return c
def train(args):
""" main training loop """
# legacy ddp code
rank = 0
db = dataset_factory(['tartan'], datapath="datasets/TartanAir", n_frames=args.n_frames)
train_loader = DataLoader(db, batch_size=1, shuffle=True, num_workers=4)
net = VONet()
net.train()
net.cuda()
if args.ckpt is not None:
state_dict = torch.load(args.ckpt)
new_state_dict = OrderedDict()
for k, v in state_dict.items():
new_state_dict[k.replace('module.', '')] = v
net.load_state_dict(new_state_dict, strict=False)
optimizer = torch.optim.AdamW(net.parameters(), lr=args.lr, weight_decay=1e-6)
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer,
args.lr, args.steps, pct_start=0.01, cycle_momentum=False, anneal_strategy='linear')
if rank == 0:
logger = Logger(args.name, scheduler)
total_steps = 0
while 1:
for data_blob in train_loader:
images, poses, disps, intrinsics = [x.cuda().float() for x in data_blob]
optimizer.zero_grad()
# fix poses to gt for first 1k steps
so = total_steps < 1000 and args.ckpt is None
poses = SE3(poses).inv()
traj = net(images, poses, disps, intrinsics, M=1024, STEPS=18, structure_only=so)
loss = 0.0
for i, (v, x, y, P1, P2, kl) in enumerate(traj):
e = (x - y).norm(dim=-1)
e = e.reshape(-1, net.P**2)[(v > 0.5).reshape(-1)].min(dim=-1).values
N = P1.shape[1]
ii, jj = torch.meshgrid(torch.arange(N), torch.arange(N))
ii = ii.reshape(-1).cuda()
jj = jj.reshape(-1).cuda()
k = ii != jj
ii = ii[k]
jj = jj[k]
P1 = P1.inv()
P2 = P2.inv()
t1 = P1.matrix()[...,:3,3]
t2 = P2.matrix()[...,:3,3]
s = kabsch_umeyama(t2[0], t1[0]).detach().clamp(max=10.0)
P1 = P1.scale(s.view(1, 1))
dP = P1[:,ii].inv() * P1[:,jj]
dG = P2[:,ii].inv() * P2[:,jj]
e1 = (dP * dG.inv()).log()
tr = e1[...,0:3].norm(dim=-1)
ro = e1[...,3:6].norm(dim=-1)
loss += args.flow_weight * e.mean()
if not so and i >= 2:
loss += args.pose_weight * ( tr.mean() + ro.mean() )
# kl is 0 (not longer used)
loss += kl
loss.backward()
torch.nn.utils.clip_grad_norm_(net.parameters(), args.clip)
optimizer.step()
scheduler.step()
total_steps += 1
metrics = {
"loss": loss.item(),
"kl": kl.item(),
"px1": (e < .25).float().mean().item(),
"ro": ro.float().mean().item(),
"tr": tr.float().mean().item(),
"r1": (ro < .001).float().mean().item(),
"r2": (ro < .01).float().mean().item(),
"t1": (tr < .001).float().mean().item(),
"t2": (tr < .01).float().mean().item(),
}
if rank == 0:
logger.push(metrics)
if total_steps % 10000 == 0: #and total_steps > 50000:
torch.cuda.empty_cache()
if rank == 0:
PATH = 'checkpoints/%s_%06d.pth' % (args.name, total_steps)
torch.save(net.state_dict(), PATH)
validation_results = validate(None, net)
if rank == 0:
logger.write_dict(validation_results)
torch.cuda.empty_cache()
net.train()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--name', default='bla', help='name your experiment')
parser.add_argument('--ckpt', help='checkpoint to restore')
parser.add_argument('--steps', type=int, default=240000)
parser.add_argument('--lr', type=float, default=0.00008)
parser.add_argument('--clip', type=float, default=10.0)
parser.add_argument('--n_frames', type=int, default=15)
parser.add_argument('--pose_weight', type=float, default=10.0)
parser.add_argument('--flow_weight', type=float, default=0.1)
args = parser.parse_args()
train(args)