-
Notifications
You must be signed in to change notification settings - Fork 820
/
ShortestPathVisitingAllNodes.java
105 lines (96 loc) · 2.9 KB
/
ShortestPathVisitingAllNodes.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
/* (C) 2024 YourCompanyName */
package dynamic_programming;
import java.util.*;
/**
* Created by gouthamvidyapradhan on 16/10/2020
*
* <p>An undirected, connected graph of N nodes (labeled 0, 1, 2, ..., N-1) is given as graph.
*
* <p>graph.length = N, and j != i is in the list graph[i] exactly once, if and only if nodes i and
* j are connected.
*
* <p>Return the length of the shortest path that visits every node. You may start and stop at any
* node, you may revisit nodes multiple times, and you may reuse edges.
*
* <p>Example 1:
*
* <p>Input: [[1,2,3],[0],[0],[0]] Output: 4 Explanation: One possible path is [1,0,2,0,3] Example
* 2:
*
* <p>Input: [[1],[0,2,4],[1,3,4],[2],[1,2]] Output: 4 Explanation: One possible path is [0,1,4,2,3]
*
* <p>Note:
*
* <p>1 <= graph.length <= 12 0 <= graph[i].length < graph.length
*/
public class ShortestPathVisitingAllNodes {
public static void main(String[] args) {
int[][] graph = {{2, 3, 4, 8}, {8}, {0}, {0, 8}, {0, 5, 6}, {4, 7}, {4}, {5}, {0, 3, 1}};
System.out.println(new ShortestPathVisitingAllNodes().shortestPathLength(graph));
}
Stack<Node> stack;
Set<Node> done;
class Node {
int v, s;
Node(int v, int s) {
this.v = v;
this.s = s;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (!(o instanceof Node)) return false;
Node node = (Node) o;
return v == node.v && s == node.s;
}
@Override
public int hashCode() {
return Objects.hash(v, s);
}
}
public int shortestPathLength(int[][] G) {
int dest = (int) Math.pow(2, G.length) - 1;
int[][] DP = new int[G.length][dest + 1];
done = new HashSet<>();
stack = new Stack<>();
for (int i = 0; i < G.length; i++) {
Node n = new Node(i, 1 << i);
if (!done.contains(n)) {
dfs(n, G);
}
}
for (int i = 0; i < G.length; i++) {
Arrays.fill(DP[i], Integer.MAX_VALUE);
}
while (!stack.isEmpty()) {
Node node = stack.pop();
int[] children = G[node.v];
int currDist = DP[node.v][node.s] == Integer.MAX_VALUE ? 0 : DP[node.v][node.s];
for (int c : children) {
if (DP[c][node.s | (1 << c)] < Integer.MAX_VALUE
&& ((currDist + 1) < DP[c][node.s | (1 << c)])) {
stack.push(new Node(c, node.s | (1 << c)));
}
DP[c][node.s | (1 << c)] = Math.min(DP[c][node.s | (1 << c)], currDist + 1);
}
}
int min = Integer.MAX_VALUE;
for (int i = 0; i < G.length; i++) {
min = Math.min(min, DP[i][dest]);
}
return min == Integer.MAX_VALUE ? 0 : min;
}
private void dfs(Node n, int[][] graph) {
done.add(n);
int[] children = graph[n.v];
if (children != null) {
for (int c : children) {
Node child = new Node(c, (n.s | (1 << c)));
if (!done.contains(child)) {
dfs(child, graph);
}
}
}
stack.push(n);
}
}