-
Notifications
You must be signed in to change notification settings - Fork 820
/
NonNegativeIntegersWithoutConsecutiveOnes.java
85 lines (83 loc) · 3.45 KB
/
NonNegativeIntegersWithoutConsecutiveOnes.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
/* (C) 2024 YourCompanyName */
package dynamic_programming;
/**
* Created by gouthamvidyapradhan on 20/10/2019 Given a positive integer n, find the number of
* non-negative integers less than or equal to n, whose binary representations do NOT contain
* consecutive ones.
*
* <p>Example 1: Input: 5 Output: 5 Explanation: Here are the non-negative integers <= 5 with their
* corresponding binary representations: 0 : 0 1 : 1 2 : 10 3 : 11 4 : 100 5 : 101 Among them, only
* integer 3 disobeys the rule (two consecutive ones) and the other 5 satisfy the rule. Note: 1 <= n
* <= 109
*
* <p>Solution: O(1) (30 ^ 2) For each bit we can set either '0' or '1' starting from index i to 0,
* if we set 0 then the next bit i + 1 can be either set to 0 or 1 but, if we set it to 1 then the
* next bit at position i + 1 can only be 0 because two consecutive 1s are invalid. This gives us a
* general dp formula DP[0][i] = DP[0][i + 1] + DP[1][i + 1] for bit 0 and similarly DP[1][i] =
* DP[0][i + 1].
*
* <p>Lets consider an example with number = 4 (binary representation is 100). Now, the above
* approach would calculate all possible number ranging from 0 (000) -> 7 (111), lets say the count
* is x. But, we actually want to restrict until only 100. Therefore we have to calculate all valid
* states starting from 100 until 111 and lets say this is y. Now, the answer would be x - y + 1.
* Adding 1 here because the state 100 (which is a valid state) would be counted twice in x and also
* in y. For cases where a binary representation of given N is like 1100 we have to find a max
* possible valid state which occurs just before 1100 which in this case is 1010 and now calculate y
* starting from 1010 to 1111.
*/
public class NonNegativeIntegersWithoutConsecutiveOnes {
public static void main(String[] args) {
System.out.println(new NonNegativeIntegersWithoutConsecutiveOnes().findIntegers(1000000000));
}
public int findIntegers(int num) {
int msbIndex = 0;
for (int i = 0; i < 31; i++) {
if (((1 << i) & num) > 0) {
msbIndex = i;
}
}
int[][] DP1 = new int[2][msbIndex + 1]; // count from 0 until all possible value.
int[][] DP2 = new int[2][msbIndex + 2]; // count from given N until max possible value
for (int i = msbIndex; i >= 0; i--) {
if (i == msbIndex) {
DP1[0][msbIndex] = 1;
DP1[1][msbIndex] = 1;
} else {
DP1[0][i] = DP1[0][i + 1] + DP1[1][i + 1];
DP1[1][i] = DP1[0][i + 1];
}
}
// find valid state just before given num
int[] bits = new int[msbIndex + 1];
boolean bitFlipped = false;
for (int i = msbIndex, j = 0; i >= 0; i--, j++) {
if (j == 0) {
bits[j] = 1;
} else {
if (bitFlipped) {
bits[j] = bits[j - 1] == 0 ? 1 : 0;
} else {
if (((1 << i) & num) > 0) {
if (bits[j - 1] > 0) {
bits[j] = 0;
bitFlipped = true;
} else bits[j] = 1;
}
}
}
}
DP2[0][msbIndex + 1] = 1;
for (int i = bits.length - 1; i >= 0; i--) {
if (bits[i] == 0) {
DP2[0][i] = DP2[0][i + 1] + DP2[1][i + 1];
// if the curr bit is 0 then, we can make this 1 provided the previous bit was not 1
if (bits[i - 1] == 0) {
DP2[1][i] = (i == bits.length - 1) ? 1 : DP1[0][i + 1];
}
} else {
DP2[1][i] = DP2[0][i + 1];
}
}
return (DP1[0][0] + DP1[1][0]) - (DP2[0][0] + DP2[1][0]) + 1;
}
}