-
Notifications
You must be signed in to change notification settings - Fork 820
/
LongestIncreasingSubsequence.java
42 lines (40 loc) · 1.25 KB
/
LongestIncreasingSubsequence.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
/* (C) 2024 YourCompanyName */
package dynamic_programming;
/**
* Created by gouthamvidyapradhan on 02/04/2017. Given an unsorted array of integers, find the
* length of longest increasing subsequence.
*
* <p>For example, Given [10, 9, 2, 5, 3, 7, 101, 18], The longest increasing subsequence is [2, 3,
* 7, 101], therefore the length is 4. Note that there may be more than one LIS combination, it is
* only necessary for you to return the length.
*
* <p>Your algorithm should run in O(n2) complexity.
*
* <p>Follow up: Could you improve it to O(n log n) time complexity?
*/
public class LongestIncreasingSubsequence {
/**
* Main method
*
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
int[] nums = {9, 8, 7, 6};
System.out.println(new LongestIncreasingSubsequence().lengthOfLIS(nums));
}
public int lengthOfLIS(int[] nums) {
if (nums.length == 0) return 0;
int[] A = new int[nums.length];
int max = Integer.MIN_VALUE;
for (int i = 0, l = nums.length; i < l; i++) {
int lis = 1;
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) lis = Math.max(lis, A[j] + 1);
}
A[i] = lis;
max = Math.max(max, A[i]);
}
return max;
}
}