-
Notifications
You must be signed in to change notification settings - Fork 820
/
LargestPlusSign.java
131 lines (126 loc) · 3.99 KB
/
LargestPlusSign.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/* (C) 2024 YourCompanyName */
package dynamic_programming;
/**
* Created by gouthamvidyapradhan on 20/01/2018. In a 2D grid from (0, 0) to (N-1, N-1), every cell
* contains a 1, except those cells in the given list mines which are 0. What is the largest
* axis-aligned plus sign of 1s contained in the grid? Return the order of the plus sign. If there
* is none, return 0.
*
* <p>An "axis-aligned plus sign of 1s of order k" has some center grid[x][y] = 1 along with 4 arms
* of length k-1 going up, down, left, and right, and made of 1s. This is demonstrated in the
* diagrams below. Note that there could be 0s or 1s beyond the arms of the plus sign, only the
* relevant area of the plus sign is checked for 1s.
*
* <p>Examples of Axis-Aligned Plus Signs of Order k:
*
* <p>Order 1: 000 010 000
*
* <p>Order 2: 00000 00100 01110 00100 00000
*
* <p>Order 3: 0000000 0001000 0001000 0111110 0001000 0001000 0000000 Example 1:
*
* <p>Input: N = 5, mines = [[4, 2]] Output: 2 Explanation: 11111 11111 11111 11111 11011 In the
* above grid, the largest plus sign can only be order 2. One of them is marked in bold. Example 2:
*
* <p>Input: N = 2, mines = [] Output: 1 Explanation: There is no plus sign of order 2, but there is
* of order 1. Example 3:
*
* <p>Input: N = 1, mines = [[0, 0]] Output: 0 Explanation: There is no plus sign, so return 0.
* Note:
*
* <p>N will be an integer in the range [1, 500]. mines will have length at most 5000. mines[i] will
* be length 2 and consist of integers in the range [0, N-1]. (Additionally, programs submitted in
* C, C++, or C# will be judged with a slightly smaller time limit.)
*
* <p>Solution O(N x N) for each cell containing 1 find the nearest cell containing 0 in both
* vertical and horizontal direction - save this value in a 2d array for each cell. The answer is
* max value saved in 2d array.
*/
public class LargestPlusSign {
/**
* Main method
*
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
int[][] M = {{4, 2}};
System.out.println(new LargestPlusSign().orderOfLargestPlusSign(5, M));
}
public int orderOfLargestPlusSign(int N, int[][] mines) {
int[][] A = new int[N][N]; // array to save the mines information.
int[][] B = new int[N][N]; // array to save the minimum distance to the cell containing 0
for (int[] row : mines) {
int r = row[0];
int c = row[1];
A[r][c] = 1;
}
for (int i = 0; i < A.length; i++) {
for (int j = 0; j < A[0].length; j++) {
if (A[i][j] == 0) {
A[i][j] = 1;
} else {
A[i][j] = 0;
}
B[i][j] = Integer.MAX_VALUE;
}
}
// For each rwo
for (int i = 0; i < A.length; i++) {
int prev = 0;
// forward direction
for (int j = 0; j < A[0].length; j++) {
if (A[i][j] == 0) {
prev = 0;
B[i][j] = 0;
} else {
prev++;
B[i][j] = Math.min(B[i][j], prev);
}
}
prev = 0;
// backward direction
for (int j = N - 1; j >= 0; j--) {
if (A[i][j] == 0) {
prev = 0;
B[i][j] = 0;
} else {
prev++;
B[i][j] = Math.min(B[i][j], prev);
}
}
}
// for each column
for (int j = 0; j < B[0].length; j++) {
int prev = 0;
// downward direction
for (int i = 0; i < B.length; i++) {
if (A[i][j] == 0) {
prev = 0;
B[i][j] = 0;
} else {
prev++;
B[i][j] = Math.min(B[i][j], prev);
}
}
prev = 0;
// upward direction
for (int i = N - 1; i >= 0; i--) {
if (A[i][j] == 0) {
prev = 0;
B[i][j] = 0;
} else {
prev++;
B[i][j] = Math.min(B[i][j], prev);
}
}
}
int result = 0;
for (int i = 0; i < B.length; i++) {
for (int j = 0; j < B[0].length; j++) {
result = Math.max(result, B[i][j]);
}
}
return result;
}
}