-
Notifications
You must be signed in to change notification settings - Fork 820
/
CoinChange2.java
50 lines (46 loc) · 1.65 KB
/
CoinChange2.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
/* (C) 2024 YourCompanyName */
package dynamic_programming;
import java.util.Arrays;
/**
* Created by gouthamvidyapradhan on 22/03/2017. You are given coins of different denominations and
* a total amount of money. Write a function to compute the number of combinations that make up that
* amount. You may assume that you have infinite number of each kind of coin.
*
* <p>Note: You can assume that
*
* <p>0 <= amount <= 5000 1 <= coin <= 5000 the number of coins is less than 500 the answer is
* guaranteed to fit into signed 32-bit integer Example 1:
*
* <p>Input: amount = 5, coins = [1, 2, 5] Output: 4 Explanation: there are four ways to make up the
* amount: 5=5 5=2+2+1 5=2+1+1+1 5=1+1+1+1+1 Example 2:
*
* <p>Input: amount = 3, coins = [2] Output: 0 Explanation: the amount of 3 cannot be made up just
* with coins of 2. Example 3:
*
* <p>Input: amount = 10, coins = [10] Output: 1
*/
public class CoinChange2 {
/**
* Main method
*
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
int[] coins = {1, 2, 5};
System.out.println(new CoinChange2().change(5, coins));
}
public int change(int amount, int[] coins) {
int[][] dp = new int[coins.length][amount + 1];
for (int i = 0, l = coins.length; i < l; i++) Arrays.fill(dp[i], -1);
return dp(dp, 0, coins, coins.length, amount);
}
private int dp(int[][] dp, int i, int[] coins, int l, int n) {
if (n == 0) return 1;
else if (i >= l) return 0;
if (n < 0) return 0;
if (dp[i][n] != -1) return dp[i][n];
dp[i][n] = dp(dp, i + 1, coins, l, n) + dp(dp, i, coins, l, n - coins[i]);
return dp[i][n];
}
}