-
Notifications
You must be signed in to change notification settings - Fork 820
/
TotalHammingDistance.java
48 lines (46 loc) · 1.51 KB
/
TotalHammingDistance.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
/* (C) 2024 YourCompanyName */
package bit_manipulation;
/**
* Created by gouthamvidyapradhan on 01/12/2017. The Hamming distance between two integers is the
* number of positions at which the corresponding bits are different.
*
* <p>Now your job is to find the total Hamming distance between all pairs of the given numbers.
*
* <p>Example: Input: 4, 14, 2
*
* <p>Output: 6
*
* <p>Explanation: In binary representation, the 4 is 0100, 14 is 1110, and 2 is 0010 (just showing
* the four bits relevant in this case). So the answer will be: HammingDistance(4, 14) +
* HammingDistance(4, 2) + HammingDistance(14, 2) = 2 + 2 + 2 = 6. Note: Elements of the given array
* are in the range of 0 to 10^9 Length of the array will not exceed 10^4.
*
* <p>Solution: O(N * 32): Count the number of set bits in each of 32 bit positions and then take
* the sum of product of number of set bits x number of un-set bits
*/
public class TotalHammingDistance {
/**
* Main method
*
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
int[] A = {1000000000, 4, 14, 2};
System.out.println(new TotalHammingDistance().totalHammingDistance(A));
}
public int totalHammingDistance(int[] nums) {
int sum = 0;
for (int i = 0; i < 32; i++) {
int numOfOnes = 0;
int p = (1 << i);
for (int num : nums) {
if ((num & p) > 0) {
numOfOnes++;
}
}
sum += ((nums.length - numOfOnes) * numOfOnes);
}
return sum;
}
}