-
Notifications
You must be signed in to change notification settings - Fork 12
/
fb.go
184 lines (165 loc) · 5.41 KB
/
fb.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
package framebuffer
/*
#include <sys/ioctl.h>
#include <linux/fb.h>
struct fb_fix_screeninfo getFixScreenInfo(int fd) {
struct fb_fix_screeninfo info;
ioctl(fd, FBIOGET_FSCREENINFO, &info);
return info;
}
struct fb_var_screeninfo getVarScreenInfo(int fd) {
struct fb_var_screeninfo info;
ioctl(fd, FBIOGET_VSCREENINFO, &info);
return info;
}
*/
import "C"
import (
"errors"
"image"
"image/color"
"os"
"syscall"
)
// Open expects a framebuffer device as its argument (such as "/dev/fb0"). The
// device will be memory-mapped to a local buffer. Writing to the device changes
// the screen output.
// The returned Device implements the draw.Image interface. This means that you
// can use it to copy to and from other images.
// The only supported color model for the specified frame buffer is RGB565.
// After you are done using the Device, call Close on it to unmap the memory and
// close the framebuffer file.
func Open(device string) (*Device, error) {
file, err := os.OpenFile(device, os.O_RDWR, os.ModeDevice)
if err != nil {
return nil, err
}
fixInfo := C.getFixScreenInfo(C.int(file.Fd()))
varInfo := C.getVarScreenInfo(C.int(file.Fd()))
pixels, err := syscall.Mmap(
int(file.Fd()),
0, int(varInfo.xres*varInfo.yres*varInfo.bits_per_pixel/8),
syscall.PROT_READ|syscall.PROT_WRITE, syscall.MAP_SHARED,
)
if err != nil {
file.Close()
return nil, err
}
var colorModel color.Model
if varInfo.red.offset == 11 && varInfo.red.length == 5 && varInfo.red.msb_right == 0 &&
varInfo.green.offset == 5 && varInfo.green.length == 6 && varInfo.green.msb_right == 0 &&
varInfo.blue.offset == 0 && varInfo.blue.length == 5 && varInfo.blue.msb_right == 0 {
colorModel = rgb565ColorModel{}
} else {
return nil, errors.New("unsupported color model")
}
return &Device{
file,
pixels,
int(fixInfo.line_length),
image.Rect(0, 0, int(varInfo.xres), int(varInfo.yres)),
colorModel,
}, nil
}
// Device represents the frame buffer. It implements the draw.Image interface.
type Device struct {
file *os.File
pixels []byte
pitch int
bounds image.Rectangle
colorModel color.Model
}
// Close unmaps the framebuffer memory and closes the device file. Call this
// function when you are done using the frame buffer.
func (d *Device) Close() {
syscall.Munmap(d.pixels)
d.file.Close()
}
// Bounds implements the image.Image (and draw.Image) interface.
func (d *Device) Bounds() image.Rectangle {
return d.bounds
}
// ColorModel implements the image.Image (and draw.Image) interface.
func (d *Device) ColorModel() color.Model {
return d.colorModel
}
// At implements the image.Image (and draw.Image) interface.
func (d *Device) At(x, y int) color.Color {
if x < d.bounds.Min.X || x >= d.bounds.Max.X ||
y < d.bounds.Min.Y || y >= d.bounds.Max.Y {
return rgb565(0)
}
i := y*d.pitch + 2*x
return rgb565(d.pixels[i+1])<<8 | rgb565(d.pixels[i])
}
// Set implements the draw.Image interface.
func (d *Device) Set(x, y int, c color.Color) {
// the min bounds are at 0,0 (see Open)
if x >= 0 && x < d.bounds.Max.X &&
y >= 0 && y < d.bounds.Max.Y {
r, g, b, a := c.RGBA()
if a > 0 {
rgb := toRGB565(r, g, b)
i := y*d.pitch + 2*x
// This assumes a little endian system which is the default for
// Raspbian. The d.pixels indices have to be swapped if the target
// system is big endian.
d.pixels[i+1] = byte(rgb >> 8)
d.pixels[i] = byte(rgb & 0xFF)
}
}
}
// The default color model under the Raspberry Pi is RGB 565. Each pixel is
// represented by two bytes, with 5 bits for red, 6 bits for green and 5 bits
// for blue. There is no alpha channel, so alpha is assumed to always be 100%
// opaque.
// This shows the memory layout of a pixel:
//
// bit 76543210 76543210
// RRRRRGGG GGGBBBBB
// high byte low byte
type rgb565ColorModel struct{}
func (rgb565ColorModel) Convert(c color.Color) color.Color {
r, g, b, _ := c.RGBA()
return toRGB565(r, g, b)
}
// toRGB565 helps convert a color.Color to rgb565. In a color.Color each
// channel is represented by the lower 16 bits in a uint32 so the maximum value
// is 0xFFFF. This function simply uses the highest 5 or 6 bits of each channel
// as the RGB values.
func toRGB565(r, g, b uint32) rgb565 {
// RRRRRGGGGGGBBBBB
return rgb565((r & 0xF800) +
((g & 0xFC00) >> 5) +
((b & 0xF800) >> 11))
}
// rgb565 implements the color.Color interface.
type rgb565 uint16
// RGBA implements the color.Color interface.
func (c rgb565) RGBA() (r, g, b, a uint32) {
// To convert a color channel from 5 or 6 bits back to 16 bits, the short
// bit pattern is duplicated to fill all 16 bits.
// For example the green channel in rgb565 is the middle 6 bits:
// 00000GGGGGG00000
//
// To create a 16 bit channel, these bits are or-ed together starting at the
// highest bit:
// GGGGGG0000000000 shifted << 5
// 000000GGGGGG0000 shifted >> 1
// 000000000000GGGG shifted >> 7
//
// These patterns map the minimum (all bits 0) and maximum (all bits 1)
// 5 and 6 bit channel values to the minimum and maximum 16 bit channel
// values.
//
// Alpha is always 100% opaque since this model does not support
// transparency.
rBits := uint32(c & 0xF800) // RRRRR00000000000
gBits := uint32(c & 0x7E0) // 00000GGGGGG00000
bBits := uint32(c & 0x1F) // 00000000000BBBBB
r = uint32(rBits | rBits>>5 | rBits>>10 | rBits>>15)
g = uint32(gBits<<5 | gBits>>1 | gBits>>7)
b = uint32(bBits<<11 | bBits<<6 | bBits<<1 | bBits>>4)
a = 0xFFFF
return
}