This repository has been archived by the owner on Nov 23, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 9
/
neldermead.go
314 lines (289 loc) · 8.78 KB
/
neldermead.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
// Copyright ©2015 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package optimize
import (
"sort"
"github.com/gonum/floats"
)
// nmIterType is a Nelder-Mead evaluation kind
type nmIterType int
const (
nmReflected = iota
nmExpanded
nmContractedInside
nmContractedOutside
nmInitialize
nmShrink
nmMajor
)
type nmVertexSorter struct {
vertices [][]float64
values []float64
}
func (n nmVertexSorter) Len() int {
return len(n.values)
}
func (n nmVertexSorter) Less(i, j int) bool {
return n.values[i] < n.values[j]
}
func (n nmVertexSorter) Swap(i, j int) {
n.values[i], n.values[j] = n.values[j], n.values[i]
n.vertices[i], n.vertices[j] = n.vertices[j], n.vertices[i]
}
// NelderMead is an implementation of the Nelder-Mead simplex algorithm for
// gradient-free nonlinear optimization (not to be confused with Danzig's
// simplex algorithm for linear programming). The implementation follows the
// algorithm described in
//
// http://epubs.siam.org/doi/pdf/10.1137/S1052623496303470
//
// If an initial simplex is provided, it is used and initLoc is ignored. If
// InitialVertices and InitialValues are both nil, an initial simplex will be
// generated automatically using the initial location as one vertex, and each
// additional vertex as SimplexSize away in one dimension.
//
// If the simplex update parameters (Reflection, etc.)
// are zero, they will be set automatically based on the dimension according to
// the recommendations in
//
// http://www.webpages.uidaho.edu/~fuchang/res/ANMS.pdf
type NelderMead struct {
InitialVertices [][]float64
InitialValues []float64
Reflection float64 // Reflection parameter (>0)
Expansion float64 // Expansion parameter (>1)
Contraction float64 // Contraction parameter (>0, <1)
Shrink float64 // Shrink parameter (>0, <1)
SimplexSize float64 // size of auto-constructed initial simplex
reflection float64
expansion float64
contraction float64
shrink float64
vertices [][]float64 // location of the vertices sorted in ascending f
values []float64 // function values at the vertices sorted in ascending f
centroid []float64 // centroid of all but the worst vertex
fillIdx int // index for filling the simplex during initialization and shrinking
lastIter nmIterType // Last iteration
reflectedPoint []float64 // Storage of the reflected point location
reflectedValue float64 // Value at the last reflection point
}
func (n *NelderMead) Init(loc *Location) (Operation, error) {
dim := len(loc.X)
if cap(n.vertices) < dim+1 {
n.vertices = make([][]float64, dim+1)
}
n.vertices = n.vertices[:dim+1]
for i := range n.vertices {
n.vertices[i] = resize(n.vertices[i], dim)
}
n.values = resize(n.values, dim+1)
n.centroid = resize(n.centroid, dim)
n.reflectedPoint = resize(n.reflectedPoint, dim)
if n.SimplexSize == 0 {
n.SimplexSize = 0.05
}
// Default parameter choices are chosen in a dimension-dependent way
// from http://www.webpages.uidaho.edu/~fuchang/res/ANMS.pdf
n.reflection = n.Reflection
if n.reflection == 0 {
n.reflection = 1
}
n.expansion = n.Expansion
if n.expansion == 0 {
n.expansion = 1 + 2/float64(dim)
}
n.contraction = n.Contraction
if n.contraction == 0 {
n.contraction = 0.75 - 1/(2*float64(dim))
}
n.shrink = n.Shrink
if n.shrink == 0 {
n.shrink = 1 - 1/float64(dim)
}
if n.InitialVertices != nil {
// Initial simplex provided. Copy the locations and values, and sort them.
if len(n.InitialVertices) != dim+1 {
panic("neldermead: incorrect number of vertices in initial simplex")
}
if len(n.InitialValues) != dim+1 {
panic("neldermead: incorrect number of values in initial simplex")
}
for i := range n.InitialVertices {
if len(n.InitialVertices[i]) != dim {
panic("neldermead: vertex size mismatch")
}
copy(n.vertices[i], n.InitialVertices[i])
}
copy(n.values, n.InitialValues)
sort.Sort(nmVertexSorter{n.vertices, n.values})
computeCentroid(n.vertices, n.centroid)
return n.returnNext(nmMajor, loc)
}
// No simplex provided. Begin initializing initial simplex. First simplex
// entry is the initial location, then step 1 in every direction.
copy(n.vertices[dim], loc.X)
n.values[dim] = loc.F
n.fillIdx = 0
loc.X[n.fillIdx] += n.SimplexSize
n.lastIter = nmInitialize
return FuncEvaluation, nil
}
// computeCentroid computes the centroid of all the simplex vertices except the
// final one
func computeCentroid(vertices [][]float64, centroid []float64) {
dim := len(centroid)
for i := range centroid {
centroid[i] = 0
}
for i := 0; i < dim; i++ {
vertex := vertices[i]
for j, v := range vertex {
centroid[j] += v
}
}
for i := range centroid {
centroid[i] /= float64(dim)
}
}
func (n *NelderMead) Iterate(loc *Location) (Operation, error) {
dim := len(loc.X)
switch n.lastIter {
case nmInitialize:
n.values[n.fillIdx] = loc.F
copy(n.vertices[n.fillIdx], loc.X)
n.fillIdx++
if n.fillIdx == dim {
// Successfully finished building initial simplex.
sort.Sort(nmVertexSorter{n.vertices, n.values})
computeCentroid(n.vertices, n.centroid)
return n.returnNext(nmMajor, loc)
}
copy(loc.X, n.vertices[dim])
loc.X[n.fillIdx] += n.SimplexSize
return FuncEvaluation, nil
case nmMajor:
// Nelder Mead iterations start with Reflection step
return n.returnNext(nmReflected, loc)
case nmReflected:
n.reflectedValue = loc.F
switch {
case loc.F >= n.values[0] && loc.F < n.values[dim-1]:
n.replaceWorst(loc.X, loc.F)
return n.returnNext(nmMajor, loc)
case loc.F < n.values[0]:
return n.returnNext(nmExpanded, loc)
default:
if loc.F < n.values[dim] {
return n.returnNext(nmContractedOutside, loc)
}
return n.returnNext(nmContractedInside, loc)
}
case nmExpanded:
if loc.F < n.reflectedValue {
n.replaceWorst(loc.X, loc.F)
} else {
n.replaceWorst(n.reflectedPoint, n.reflectedValue)
}
return n.returnNext(nmMajor, loc)
case nmContractedOutside:
if loc.F <= n.reflectedValue {
n.replaceWorst(loc.X, loc.F)
return n.returnNext(nmMajor, loc)
}
n.fillIdx = 1
return n.returnNext(nmShrink, loc)
case nmContractedInside:
if loc.F < n.values[dim] {
n.replaceWorst(loc.X, loc.F)
return n.returnNext(nmMajor, loc)
}
n.fillIdx = 1
return n.returnNext(nmShrink, loc)
case nmShrink:
copy(n.vertices[n.fillIdx], loc.X)
n.values[n.fillIdx] = loc.F
n.fillIdx++
if n.fillIdx != dim+1 {
return n.returnNext(nmShrink, loc)
}
sort.Sort(nmVertexSorter{n.vertices, n.values})
computeCentroid(n.vertices, n.centroid)
return n.returnNext(nmMajor, loc)
default:
panic("unreachable")
}
}
// returnNext updates the location based on the iteration type and the current
// simplex, and returns the next operation.
func (n *NelderMead) returnNext(iter nmIterType, loc *Location) (Operation, error) {
n.lastIter = iter
switch iter {
case nmMajor:
// Fill loc with the current best point and value,
// and command a convergence check.
copy(loc.X, n.vertices[0])
loc.F = n.values[0]
return MajorIteration, nil
case nmReflected, nmExpanded, nmContractedOutside, nmContractedInside:
// x_new = x_centroid + scale * (x_centroid - x_worst)
var scale float64
switch iter {
case nmReflected:
scale = n.reflection
case nmExpanded:
scale = n.reflection * n.expansion
case nmContractedOutside:
scale = n.reflection * n.contraction
case nmContractedInside:
scale = -n.contraction
}
dim := len(loc.X)
floats.SubTo(loc.X, n.centroid, n.vertices[dim])
floats.Scale(scale, loc.X)
floats.Add(loc.X, n.centroid)
if iter == nmReflected {
copy(n.reflectedPoint, loc.X)
}
return FuncEvaluation, nil
case nmShrink:
// x_shrink = x_best + delta * (x_i + x_best)
floats.SubTo(loc.X, n.vertices[n.fillIdx], n.vertices[0])
floats.Scale(n.shrink, loc.X)
floats.Add(loc.X, n.vertices[0])
return FuncEvaluation, nil
default:
panic("unreachable")
}
}
// replaceWorst removes the worst location in the simplex and adds the new
// {x, f} pair maintaining sorting.
func (n *NelderMead) replaceWorst(x []float64, f float64) {
dim := len(x)
if f >= n.values[dim] {
panic("increase in simplex value")
}
copy(n.vertices[dim], x)
n.values[dim] = f
// Sort the newly-added value.
for i := dim - 1; i >= 0; i-- {
if n.values[i] < f {
break
}
n.vertices[i], n.vertices[i+1] = n.vertices[i+1], n.vertices[i]
n.values[i], n.values[i+1] = n.values[i+1], n.values[i]
}
// Update the location of the centroid. Only one point has been replaced, so
// subtract the worst point and add the new one.
floats.AddScaled(n.centroid, -1/float64(dim), n.vertices[dim])
floats.AddScaled(n.centroid, 1/float64(dim), x)
}
func (*NelderMead) Needs() struct {
Gradient bool
Hessian bool
} {
return struct {
Gradient bool
Hessian bool
}{false, false}
}