This repository has been archived by the owner on Nov 23, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 9
/
lbfgs.go
167 lines (140 loc) · 4.2 KB
/
lbfgs.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
// Copyright ©2014 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package optimize
import (
"github.com/gonum/floats"
)
// LBFGS implements the limited-memory BFGS method for gradient-based
// unconstrained minimization.
//
// It stores a modified version of the inverse Hessian approximation H
// implicitly from the last Store iterations while the normal BFGS method
// stores and manipulates H directly as a dense matrix. Therefore LBFGS is more
// appropriate than BFGS for large problems as the cost of LBFGS scales as
// O(Store * dim) while BFGS scales as O(dim^2). The "forgetful" nature of
// LBFGS may also make it perform better than BFGS for functions with Hessians
// that vary rapidly spatially.
type LBFGS struct {
// Linesearcher selects suitable steps along the descent direction.
// Accepted steps should satisfy the strong Wolfe conditions.
// If Linesearcher is nil, a reasonable default will be chosen.
Linesearcher Linesearcher
// Store is the size of the limited-memory storage.
// If Store is 0, it will be defaulted to 15.
Store int
ls *LinesearchMethod
dim int // Dimension of the problem
x []float64 // Location at the last major iteration
grad []float64 // Gradient at the last major iteration
// History
oldest int // Index of the oldest element of the history
y [][]float64 // Last Store values of y
s [][]float64 // Last Store values of s
rho []float64 // Last Store values of rho
a []float64 // Cache of Hessian updates
}
func (l *LBFGS) Init(loc *Location) (Operation, error) {
if l.Linesearcher == nil {
l.Linesearcher = &Bisection{}
}
if l.Store == 0 {
l.Store = 15
}
if l.ls == nil {
l.ls = &LinesearchMethod{}
}
l.ls.Linesearcher = l.Linesearcher
l.ls.NextDirectioner = l
return l.ls.Init(loc)
}
func (l *LBFGS) Iterate(loc *Location) (Operation, error) {
return l.ls.Iterate(loc)
}
func (l *LBFGS) InitDirection(loc *Location, dir []float64) (stepSize float64) {
dim := len(loc.X)
l.dim = dim
l.oldest = 0
l.a = resize(l.a, l.Store)
l.rho = resize(l.rho, l.Store)
l.y = l.initHistory(l.y)
l.s = l.initHistory(l.s)
l.x = resize(l.x, dim)
copy(l.x, loc.X)
l.grad = resize(l.grad, dim)
copy(l.grad, loc.Gradient)
copy(dir, loc.Gradient)
floats.Scale(-1, dir)
return 1 / floats.Norm(dir, 2)
}
func (l *LBFGS) initHistory(hist [][]float64) [][]float64 {
c := cap(hist)
if c < l.Store {
n := make([][]float64, l.Store-c)
hist = append(hist[:c], n...)
}
hist = hist[:l.Store]
for i := range hist {
hist[i] = resize(hist[i], l.dim)
for j := range hist[i] {
hist[i][j] = 0
}
}
return hist
}
func (l *LBFGS) NextDirection(loc *Location, dir []float64) (stepSize float64) {
// Uses two-loop correction as described in
// Nocedal, J., Wright, S.: Numerical Optimization (2nd ed). Springer (2006), chapter 7, page 178.
if len(loc.X) != l.dim {
panic("lbfgs: unexpected size mismatch")
}
if len(loc.Gradient) != l.dim {
panic("lbfgs: unexpected size mismatch")
}
if len(dir) != l.dim {
panic("lbfgs: unexpected size mismatch")
}
y := l.y[l.oldest]
floats.SubTo(y, loc.Gradient, l.grad)
s := l.s[l.oldest]
floats.SubTo(s, loc.X, l.x)
sDotY := floats.Dot(s, y)
l.rho[l.oldest] = 1 / sDotY
l.oldest = (l.oldest + 1) % l.Store
copy(l.x, loc.X)
copy(l.grad, loc.Gradient)
copy(dir, loc.Gradient)
// Start with the most recent element and go backward,
for i := 0; i < l.Store; i++ {
idx := l.oldest - i - 1
if idx < 0 {
idx += l.Store
}
l.a[idx] = l.rho[idx] * floats.Dot(l.s[idx], dir)
floats.AddScaled(dir, -l.a[idx], l.y[idx])
}
// Scale the initial Hessian.
gamma := sDotY / floats.Dot(y, y)
floats.Scale(gamma, dir)
// Start with the oldest element and go forward.
for i := 0; i < l.Store; i++ {
idx := i + l.oldest
if idx >= l.Store {
idx -= l.Store
}
beta := l.rho[idx] * floats.Dot(l.y[idx], dir)
floats.AddScaled(dir, l.a[idx]-beta, l.s[idx])
}
// dir contains H^{-1} * g, so flip the direction for minimization.
floats.Scale(-1, dir)
return 1
}
func (*LBFGS) Needs() struct {
Gradient bool
Hessian bool
} {
return struct {
Gradient bool
Hessian bool
}{true, false}
}