This repository has been archived by the owner on Nov 23, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 9
/
bisection.go
146 lines (130 loc) · 3.9 KB
/
bisection.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
// Copyright ©2014 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package optimize
import "math"
const (
defaultBisectionCurvature = 0.9
)
// Bisection is a Linesearcher that uses a bisection to find a point that
// satisfies the strong Wolfe conditions with the given curvature factor and
// a decrease factor of zero.
type Bisection struct {
// CurvatureFactor is the constant factor in the curvature condition.
// Smaller values result in a more exact line search.
// A set value must be in the interval (0, 1), otherwise Init will panic.
// If it is zero, it will be defaulted to 0.9.
CurvatureFactor float64
minStep float64
maxStep float64
currStep float64
initF float64
minF float64
maxF float64
lastF float64
initGrad float64
lastOp Operation
}
func (b *Bisection) Init(f, g float64, step float64) Operation {
if step <= 0 {
panic("bisection: bad step size")
}
if g >= 0 {
panic("bisection: initial derivative is non-negative")
}
if b.CurvatureFactor == 0 {
b.CurvatureFactor = defaultBisectionCurvature
}
if b.CurvatureFactor <= 0 || b.CurvatureFactor >= 1 {
panic("bisection: CurvatureFactor not between 0 and 1")
}
b.minStep = 0
b.maxStep = math.Inf(1)
b.currStep = step
b.initF = f
b.minF = f
b.maxF = math.NaN()
b.initGrad = g
// Only evaluate the gradient when necessary.
b.lastOp = FuncEvaluation
return b.lastOp
}
func (b *Bisection) Iterate(f, g float64) (Operation, float64, error) {
if b.lastOp != FuncEvaluation && b.lastOp != GradEvaluation {
panic("bisection: Init has not been called")
}
minF := b.initF
if b.maxF < minF {
minF = b.maxF
}
if b.minF < minF {
minF = b.minF
}
if b.lastOp == FuncEvaluation {
// See if the function value is good enough to make progress. If it is,
// evaluate the gradient. If not, set it to the upper bound if the bound
// has not yet been found, otherwise iterate toward the minimum location.
if f <= minF {
b.lastF = f
b.lastOp = GradEvaluation
return b.lastOp, b.currStep, nil
}
if math.IsInf(b.maxStep, 1) {
b.maxStep = b.currStep
b.maxF = f
return b.nextStep((b.minStep + b.maxStep) / 2)
}
if b.minF <= b.maxF {
b.maxStep = b.currStep
b.maxF = f
} else {
b.minStep = b.currStep
b.minF = f
}
return b.nextStep((b.minStep + b.maxStep) / 2)
}
f = b.lastF
// The function value was lower. Check if this location is sufficient to
// converge the linesearch, otherwise iterate.
if StrongWolfeConditionsMet(f, g, minF, b.initGrad, b.currStep, 0, b.CurvatureFactor) {
b.lastOp = MajorIteration
return b.lastOp, b.currStep, nil
}
if math.IsInf(b.maxStep, 1) {
// The function value is lower. If the gradient is positive, an upper bound
// of the minimum been found. If the gradient is negative, search farther
// in that direction.
if g > 0 {
b.maxStep = b.currStep
b.maxF = f
return b.nextStep((b.minStep + b.maxStep) / 2)
}
b.minStep = b.currStep
b.minF = f
return b.nextStep(b.currStep * 2)
}
// The interval has been bounded, and we have found a new lowest value. Use
// the gradient to decide which direction.
if g < 0 {
b.minStep = b.currStep
b.minF = f
} else {
b.maxStep = b.currStep
b.maxF = f
}
return b.nextStep((b.minStep + b.maxStep) / 2)
}
// nextStep checks if the new step is equal to the old step.
// This can happen if min and max are the same, or if the step size is infinity,
// both of which indicate the minimization must stop. If the steps are different,
// it sets the new step size and returns the evaluation type and the step. If the steps
// are the same, it returns an error.
func (b *Bisection) nextStep(step float64) (Operation, float64, error) {
if b.currStep == step {
b.lastOp = NoOperation
return b.lastOp, b.currStep, ErrLinesearcherFailure
}
b.currStep = step
b.lastOp = FuncEvaluation
return b.lastOp, b.currStep, nil
}