forked from tinkerhub/toast
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
47 lines (35 loc) · 1.29 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import cv2
import numpy as np
def get_faces(image_data):
"""
This function takes in image data as a parameter and then uses OpenCV
functions to identify faces in the image. Then it returns all those faces as
separate images in a list.
Parameters:
image_data - Image data in bytes format.
"""
# Convert the image data to a numpy array
nparr = np.frombuffer(image_data, np.uint8)
# Decode the image data
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
# Convert the image from BGR to RGB color space
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Convert the image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Load the face cascade classifier
faceCascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
# Detect faces in the image
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.3,
minNeighbors=3,
minSize=(30, 30)
)
found_faces = []
print("Found {0} Faces!".format(len(faces)))
for (x, y, w, h) in faces:
# Extract the face region of interest from the image
roi_color = image[y:y + h, x:x + w]
# Add the face to the list of found faces
found_faces.append(roi_color)
return found_faces