-
Notifications
You must be signed in to change notification settings - Fork 894
/
sops.go
957 lines (892 loc) · 31.2 KB
/
sops.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
/*
Package sops manages JSON, YAML and BINARY documents to be encrypted or decrypted.
This package should not be used directly. Instead, Sops users should install the
command line client via `go get -u github.com/getsops/sops/v3/cmd/sops`, or use the
decryption helper provided at `github.com/getsops/sops/v3/decrypt`.
We do not guarantee API stability for any package other than `github.com/getsops/sops/v3/decrypt`.
A Sops document is a Tree composed of a data branch with arbitrary key/value pairs
and a metadata branch with encryption and integrity information.
In JSON and YAML formats, the structure of the cleartext tree is preserved, keys are
stored in cleartext and only values are encrypted. Keeping the keys in cleartext
provides better readability when storing Sops documents in version controls, and allows
for merging competing changes on documents. This is a major difference between Sops
and other encryption tools that store documents as encrypted blobs.
In BINARY format, the cleartext data is treated as a single blob and the encrypted
document is in JSON format with a single `data` key and a single encrypted value.
Sops allows operators to encrypt their documents with multiple master keys. Each of
the master key defined in the document is able to decrypt it, allowing users to
share documents amongst themselves without sharing keys, or using a PGP key as a
backup for KMS.
In practice, this is achieved by generating a data key for each document that is used
to encrypt all values, and encrypting the data with each master key defined. Being
able to decrypt the data key gives access to the document.
The integrity of each document is guaranteed by calculating a Message Authentication Code
(MAC) that is stored encrypted by the data key. When decrypting a document, the MAC should
be recalculated and compared with the MAC stored in the document to verify that no
fraudulent changes have been applied. The MAC covers keys and values as well as their
ordering.
*/
package sops // import "github.com/getsops/sops/v3"
import (
"crypto/rand"
"crypto/sha512"
"fmt"
"reflect"
"regexp"
"slices"
"sort"
"strconv"
"strings"
"time"
"github.com/sirupsen/logrus"
"golang.org/x/net/context"
"github.com/getsops/sops/v3/age"
"github.com/getsops/sops/v3/audit"
"github.com/getsops/sops/v3/keys"
"github.com/getsops/sops/v3/keyservice"
"github.com/getsops/sops/v3/logging"
"github.com/getsops/sops/v3/pgp"
"github.com/getsops/sops/v3/shamir"
)
// DefaultUnencryptedSuffix is the default suffix a TreeItem key has to end with for sops to leave its Value unencrypted
const DefaultUnencryptedSuffix = "_unencrypted"
var DefaultDecryptionOrder = []string{age.KeyTypeIdentifier, pgp.KeyTypeIdentifier}
type sopsError string
func (e sopsError) Error() string {
return string(e)
}
// MacMismatch occurs when the computed MAC does not match the expected ones
const MacMismatch = sopsError("MAC mismatch")
// MetadataNotFound occurs when the input file is malformed and doesn't have sops metadata in it
const MetadataNotFound = sopsError("sops metadata not found")
type SopsKeyNotFound struct {
Key interface{}
Msg string
}
func (e *SopsKeyNotFound) Error() string {
return fmt.Sprintf(e.Msg, e.Key)
}
// MACOnlyEncryptedInitialization is a constant and known sequence of 32 bytes used to initialize
// MAC which is computed only over values which end up encrypted. That assures that a MAC with the
// setting enabled is always different from a MAC with this setting disabled.
// The following numbers are taken from the output of `echo -n sops | sha256sum` (shell) or `hashlib.sha256(b'sops').hexdigest()` (Python).
var MACOnlyEncryptedInitialization = []byte{0x8a, 0x3f, 0xd2, 0xad, 0x54, 0xce, 0x66, 0x52, 0x7b, 0x10, 0x34, 0xf3, 0xd1, 0x47, 0xbe, 0xb, 0xb, 0x97, 0x5b, 0x3b, 0xf4, 0x4f, 0x72, 0xc6, 0xfd, 0xad, 0xec, 0x81, 0x76, 0xf2, 0x7d, 0x69}
var log *logrus.Logger
func init() {
log = logging.NewLogger("SOPS")
}
// Cipher provides a way to encrypt and decrypt the data key used to encrypt and decrypt sops files, so that the
// data key can be stored alongside the encrypted content. A Cipher must be able to decrypt the values it encrypts.
type Cipher interface {
// Encrypt takes a plaintext, a key and additional data and returns the plaintext encrypted with the key, using the
// additional data for authentication
Encrypt(plaintext interface{}, key []byte, additionalData string) (ciphertext string, err error)
// Encrypt takes a ciphertext, a key and additional data and returns the ciphertext encrypted with the key, using
// the additional data for authentication
Decrypt(ciphertext string, key []byte, additionalData string) (plaintext interface{}, err error)
}
// Comment represents a comment in the sops tree for the file formats that actually support them.
type Comment struct {
Value string
}
// TreeItem is an item inside sops's tree
type TreeItem struct {
Key interface{}
Value interface{}
}
// TreeBranch is a branch inside sops's tree. It is a slice of TreeItems and is therefore ordered
type TreeBranch []TreeItem
// TreeBranches is a collection of TreeBranch
// Trees usually have more than one branch
type TreeBranches []TreeBranch
func valueFromPathAndLeaf(path []interface{}, leaf interface{}) interface{} {
switch component := path[0].(type) {
case int:
if len(path) == 1 {
return []interface{}{
leaf,
}
}
return []interface{}{
valueFromPathAndLeaf(path[1:], leaf),
}
default:
if len(path) == 1 {
return TreeBranch{
TreeItem{
Key: component,
Value: leaf,
},
}
}
return TreeBranch{
TreeItem{
Key: component,
Value: valueFromPathAndLeaf(path[1:], leaf),
},
}
}
}
func set(branch interface{}, path []interface{}, value interface{}) interface{} {
switch branch := branch.(type) {
case TreeBranch:
for i, item := range branch {
if item.Key == path[0] {
if len(path) == 1 {
branch[i].Value = value
} else {
branch[i].Value = set(item.Value, path[1:], value)
}
return branch
}
}
// Not found, need to add the next path entry to the branch
value := valueFromPathAndLeaf(path, value)
if newBranch, ok := value.(TreeBranch); ok && len(newBranch) > 0 {
return append(branch, newBranch[0])
}
return branch
case []interface{}:
position := path[0].(int)
if len(path) == 1 {
if position >= len(branch) {
return append(branch, value)
}
branch[position] = value
} else {
if position >= len(branch) {
branch = append(branch, valueFromPathAndLeaf(path[1:], value))
}
branch[position] = set(branch[position], path[1:], value)
}
return branch
default:
return valueFromPathAndLeaf(path, value)
}
}
// Set sets a value on a given tree for the specified path
func (branch TreeBranch) Set(path []interface{}, value interface{}) TreeBranch {
return set(branch, path, value).(TreeBranch)
}
func unset(branch interface{}, path []interface{}) (interface{}, error) {
switch branch := branch.(type) {
case TreeBranch:
for i, item := range branch {
if item.Key == path[0] {
if len(path) == 1 {
branch = slices.Delete(branch, i, i+1)
} else {
v, err := unset(item.Value, path[1:])
if err != nil {
return nil, err
}
branch[i].Value = v
}
return branch, nil
}
}
return nil, &SopsKeyNotFound{Msg: "Key not found: %s", Key: path[0]}
case []interface{}:
position := path[0].(int)
if position >= len(branch) {
return nil, &SopsKeyNotFound{Msg: "Index %d out of bounds", Key: path[0]}
}
if len(path) == 1 {
branch = slices.Delete(branch, position, position+1)
} else {
v, err := unset(branch[position], path[1:])
if err != nil {
return nil, err
}
branch[position] = v
}
return branch, nil
default:
return nil, fmt.Errorf("Unsupported type: %T for item '%s'", branch, path[0])
}
}
// Unset removes a value on a given tree from the specified path
func (branch TreeBranch) Unset(path []interface{}) (TreeBranch, error) {
v, err := unset(branch, path)
if err != nil {
return nil, err
}
return v.(TreeBranch), nil
}
// Tree is the data structure used by sops to represent documents internally
type Tree struct {
Metadata Metadata
Branches TreeBranches
// FilePath is the path of the file this struct represents
FilePath string
}
// Truncate truncates the tree to the path specified
func (branch TreeBranch) Truncate(path []interface{}) (interface{}, error) {
log.WithField("path", path).Info("Truncating tree")
var current interface{} = branch
for _, component := range path {
switch component := component.(type) {
case string:
found := false
for _, item := range current.(TreeBranch) {
if item.Key == component {
current = item.Value
found = true
break
}
}
if !found {
return nil, fmt.Errorf("component ['%s'] not found", component)
}
case int:
if reflect.ValueOf(current).Kind() != reflect.Slice {
return nil, fmt.Errorf("component [%d] is integer, but tree part is not a slice", component)
}
if reflect.ValueOf(current).Len() <= component {
return nil, fmt.Errorf("component [%d] accesses out of bounds", component)
}
current = reflect.ValueOf(current).Index(component).Interface()
}
}
return current, nil
}
func (branch TreeBranch) walkValue(in interface{}, path []string, commentsStack [][]string, onLeaves func(in interface{}, path []string, commentsStack [][]string) (interface{}, error)) (interface{}, error) {
switch in := in.(type) {
case string:
return onLeaves(in, path, commentsStack)
case []byte:
return onLeaves(string(in), path, commentsStack)
case int:
return onLeaves(in, path, commentsStack)
case bool:
return onLeaves(in, path, commentsStack)
case float64:
return onLeaves(in, path, commentsStack)
case Comment:
return onLeaves(in, path, commentsStack)
case TreeBranch:
return branch.walkBranch(in, path, commentsStack, onLeaves)
case []interface{}:
return branch.walkSlice(in, path, commentsStack, onLeaves)
case nil:
// the value returned remains the same since it doesn't make
// sense to encrypt or decrypt a nil value
return nil, nil
default:
return nil, fmt.Errorf("Cannot walk value, unknown type: %T", in)
}
}
func (branch TreeBranch) walkSlice(in []interface{}, path []string, commentsStack [][]string, onLeaves func(in interface{}, path []string, commentsStack [][]string) (interface{}, error)) ([]interface{}, error) {
// Because append returns a new slice, the original stack is not changed.
commentsStack = append(commentsStack, []string{})
for i, v := range in {
c, vIsComment := v.(Comment)
if vIsComment {
// If v is a comment, we add it to the slice of active comments.
// This allows us to also encrypt comments themselves by enabling encryption in a prior comment.
commentsStack[len(commentsStack)-1] = append(commentsStack[len(commentsStack)-1], c.Value)
}
newV, err := branch.walkValue(v, path, commentsStack, onLeaves)
if err != nil {
return nil, err
}
in[i] = newV
if !vIsComment {
// If v is not a comment, we clear the slice of active comments.
commentsStack[len(commentsStack)-1] = []string{}
}
}
return in, nil
}
func (branch TreeBranch) walkBranch(in TreeBranch, path []string, commentsStack [][]string, onLeaves func(in interface{}, path []string, commentsStack [][]string) (interface{}, error)) (TreeBranch, error) {
// Because append returns a new slice, the original stack is not changed.
commentsStack = append(commentsStack, []string{})
for i, item := range in {
if c, ok := item.Key.(Comment); ok {
// If key is a comment, we add it to the slice of active comments.
// This allows us to also encrypt comments themselves by enabling encryption in a prior comment.
commentsStack[len(commentsStack)-1] = append(commentsStack[len(commentsStack)-1], c.Value)
enc, err := branch.walkValue(item.Key, path, commentsStack, onLeaves)
if err != nil {
return nil, err
}
if encComment, ok := enc.(Comment); ok {
in[i].Key = encComment
continue
} else if comment, ok := enc.(string); ok {
in[i].Key = Comment{Value: comment}
continue
} else {
return nil, fmt.Errorf("walkValue of Comment should be either Comment or string, was %T", enc)
}
}
c, valueIsComment := item.Value.(Comment)
if valueIsComment {
// If value is a comment, we add it to the slice of active comments.
// This allows us to also encrypt comments themselves by enabling encryption in a prior comment.
commentsStack[len(commentsStack)-1] = append(commentsStack[len(commentsStack)-1], c.Value)
}
key, ok := item.Key.(string)
if !ok {
return nil, fmt.Errorf("Tree contains a non-string key (type %T): %s. Only string keys are"+
"supported", item.Key, item.Key)
}
newV, err := branch.walkValue(item.Value, append(path, key), commentsStack, onLeaves)
if err != nil {
return nil, err
}
in[i].Value = newV
if !valueIsComment {
// If value is not a comment, we clear the slice of active comments.
commentsStack[len(commentsStack)-1] = []string{}
}
}
return in, nil
}
func (tree Tree) shouldBeEncrypted(path []string, commentsStack [][]string, isComment bool) bool {
encrypted := true
if tree.Metadata.UnencryptedSuffix != "" {
for _, v := range path {
if strings.HasSuffix(v, tree.Metadata.UnencryptedSuffix) {
encrypted = false
break
}
}
}
if tree.Metadata.EncryptedSuffix != "" {
encrypted = false
for _, v := range path {
if strings.HasSuffix(v, tree.Metadata.EncryptedSuffix) {
encrypted = true
break
}
}
}
if tree.Metadata.UnencryptedRegex != "" {
for _, p := range path {
matched, _ := regexp.Match(tree.Metadata.UnencryptedRegex, []byte(p))
if matched {
encrypted = false
break
}
}
}
if tree.Metadata.EncryptedRegex != "" {
encrypted = false
for _, p := range path {
matched, _ := regexp.Match(tree.Metadata.EncryptedRegex, []byte(p))
if matched {
encrypted = true
break
}
}
}
if tree.Metadata.UnencryptedCommentRegex != "" {
unencryptedComments:
for _, cs := range commentsStack {
for _, c := range cs {
matched, _ := regexp.Match(tree.Metadata.UnencryptedCommentRegex, []byte(c))
if matched {
encrypted = false
break unencryptedComments
}
}
}
}
if tree.Metadata.EncryptedCommentRegex != "" {
lenCommentsStack := len(commentsStack)
lenLastCommentsStack := len(commentsStack[lenCommentsStack-1])
encrypted = false
encryptedComments:
for i, cs := range commentsStack {
for j, c := range cs {
// A special case. We do not encrypt the comment line itself which matches the regex.
// So we skip the last line of the last set of comments. Only if the matches any previous
// line, we encrypt this comment. Otherwise we do not.
if isComment && i == lenCommentsStack-1 && j == lenLastCommentsStack-1 {
continue
}
matched, _ := regexp.Match(tree.Metadata.EncryptedCommentRegex, []byte(c))
if matched {
encrypted = true
break encryptedComments
}
}
}
}
return encrypted
}
// Encrypt walks over the tree and encrypts all values with the provided cipher,
// except those whose key ends with the UnencryptedSuffix specified on the
// Metadata struct, those not ending with EncryptedSuffix, if EncryptedSuffix
// is provided (by default it is not), those not matching EncryptedRegex,
// if EncryptedRegex is provided (by default it is not), those matching UnencryptedRegex,
// if UnencryptedRegex is provided (by default it is not), those with their comment
// not matching EncryptedCommentRegex, if EncryptedCommentRegex is provided (by default
// it is not), or those with their comment matching UnencryptedCommentRegex, if
// UnencryptedCommentRegex is provided (by default it is not).
// If encryption is successful, it returns the MAC for the encrypted tree
// (all values if MACOnlyEncrypted is false, or only over values which end
// up encrypted if MACOnlyEncrypted is true).
func (tree Tree) Encrypt(key []byte, cipher Cipher) (string, error) {
audit.SubmitEvent(audit.EncryptEvent{
File: tree.FilePath,
})
hash := sha512.New()
if tree.Metadata.MACOnlyEncrypted {
// We initialize with known set of bytes so that a MAC with this setting
// enabled is always different from a MAC with this setting disabled.
hash.Write(MACOnlyEncryptedInitialization)
}
walk := func(branch TreeBranch) error {
_, err := branch.walkBranch(branch, make([]string, 0), make([][]string, 0), func(in interface{}, path []string, commentsStack [][]string) (interface{}, error) {
_, ok := in.(Comment)
encrypted := tree.shouldBeEncrypted(path, commentsStack, ok)
if !tree.Metadata.MACOnlyEncrypted || encrypted {
// Only add to MAC if not a comment
if !ok {
bytes, err := ToBytes(in)
if err != nil {
return nil, fmt.Errorf("Could not convert %s to bytes: %s", in, err)
}
hash.Write(bytes)
}
}
if encrypted {
var err error
pathString := strings.Join(path, ":") + ":"
in, err = cipher.Encrypt(in, key, pathString)
if err != nil {
return nil, fmt.Errorf("Could not encrypt value: %s", err)
}
if ok && tree.Metadata.UnencryptedCommentRegex != "" {
// If an encrypted comment matches tree.Metadata.UnencryptedCommentRegex, decryption will fail
// as the MAC does not match, and the commented value will not be decrypted.
matched, _ := regexp.Match(tree.Metadata.UnencryptedCommentRegex, []byte(in.(string)))
if matched {
return nil, fmt.Errorf("Encrypted comment %q matches UnencryptedCommentRegex! Make sure that UnencryptedCommentRegex cannot match an encrypted comment.", in)
}
}
}
return in, nil
})
return err
}
for _, branch := range tree.Branches {
err := walk(branch)
if err != nil {
return "", fmt.Errorf("Error walking tree: %s", err)
}
}
return fmt.Sprintf("%X", hash.Sum(nil)), nil
}
// Decrypt walks over the tree and decrypts all values with the provided cipher,
// except those whose key ends with the UnencryptedSuffix specified on the Metadata struct,
// those not ending with EncryptedSuffix, if EncryptedSuffix is provided (by default it is not),
// those not matching EncryptedRegex, if EncryptedRegex is provided (by default it is not),
// or those matching UnencryptedRegex, if UnencryptedRegex is provided (by default it is not).
// If decryption is successful, it returns the MAC for the decrypted tree
// (all values if MACOnlyEncrypted is false, or only over values which end
// up decrypted if MACOnlyEncrypted is true).
func (tree Tree) Decrypt(key []byte, cipher Cipher) (string, error) {
log.Debug("Decrypting tree")
audit.SubmitEvent(audit.DecryptEvent{
File: tree.FilePath,
})
hash := sha512.New()
if tree.Metadata.MACOnlyEncrypted {
// We initialize with known set of bytes so that a MAC with this setting
// enabled is always different from a MAC with this setting disabled.
hash.Write(MACOnlyEncryptedInitialization)
}
walk := func(branch TreeBranch) error {
_, err := branch.walkBranch(branch, make([]string, 0), make([][]string, 0), func(in interface{}, path []string, commentsStack [][]string) (interface{}, error) {
c, ok := in.(Comment)
encrypted := tree.shouldBeEncrypted(path, commentsStack, ok)
var v interface{}
if encrypted {
var err error
pathString := strings.Join(path, ":") + ":"
if ok {
v, err = cipher.Decrypt(c.Value, key, pathString)
if err != nil {
// Assume the comment was not encrypted in the first place
log.WithField("comment", c.Value).
Warn("Found possibly unencrypted comment in file. " +
"This is to be expected if the file being " +
"decrypted was created with an older version of " +
"SOPS.")
v = c
}
} else {
v, err = cipher.Decrypt(in.(string), key, pathString)
if err != nil {
return nil, fmt.Errorf("Could not decrypt value: %s", err)
}
}
} else {
v = in
}
if !tree.Metadata.MACOnlyEncrypted || encrypted {
// Only add to MAC if not a comment
if _, ok := v.(Comment); !ok {
bytes, err := ToBytes(v)
if err != nil {
return nil, fmt.Errorf("Could not convert %s to bytes: %s", in, err)
}
hash.Write(bytes)
}
}
return v, nil
})
return err
}
for _, branch := range tree.Branches {
err := walk(branch)
if err != nil {
return "", fmt.Errorf("Error walking tree: %s", err)
}
}
return fmt.Sprintf("%X", hash.Sum(nil)), nil
}
// GenerateDataKey generates a new random data key and encrypts it with all MasterKeys.
func (tree Tree) GenerateDataKey() ([]byte, []error) {
newKey := make([]byte, 32)
_, err := rand.Read(newKey)
if err != nil {
return nil, []error{fmt.Errorf("Could not generate random key: %s", err)}
}
return newKey, tree.Metadata.UpdateMasterKeys(newKey)
}
// GenerateDataKeyWithKeyServices generates a new random data key and encrypts it with all MasterKeys.
func (tree *Tree) GenerateDataKeyWithKeyServices(svcs []keyservice.KeyServiceClient) ([]byte, []error) {
newKey := make([]byte, 32)
_, err := rand.Read(newKey)
if err != nil {
return nil, []error{fmt.Errorf("Could not generate random key: %s", err)}
}
return newKey, tree.Metadata.UpdateMasterKeysWithKeyServices(newKey, svcs)
}
// Metadata holds information about a file encrypted by sops
type Metadata struct {
LastModified time.Time
UnencryptedSuffix string
EncryptedSuffix string
UnencryptedRegex string
EncryptedRegex string
UnencryptedCommentRegex string
EncryptedCommentRegex string
MessageAuthenticationCode string
MACOnlyEncrypted bool
Version string
KeyGroups []KeyGroup
// ShamirThreshold is the number of key groups required to recover the
// original data key
ShamirThreshold int
// DataKey caches the decrypted data key so it doesn't have to be decrypted with a master key every time it's needed
DataKey []byte
}
// KeyGroup is a slice of SOPS MasterKeys that all encrypt the same part of the data key
type KeyGroup []keys.MasterKey
// EncryptedFileLoader is the interface for loading of encrypted files. It provides a
// way to load encrypted SOPS files into the internal SOPS representation. Because it
// loads encrypted files, the returned data structure already contains all SOPS
// metadata.
type EncryptedFileLoader interface {
LoadEncryptedFile(in []byte) (Tree, error)
}
// PlainFileLoader is the interface for loading of plain text files. It provides a
// way to load unencrypted files into SOPS. Because the files it loads are
// unencrypted, the returned data structure does not contain any metadata.
type PlainFileLoader interface {
LoadPlainFile(in []byte) (TreeBranches, error)
}
// EncryptedFileEmitter is the interface for emitting encrypting files. It provides a
// way to emit encrypted files from the internal SOPS representation.
type EncryptedFileEmitter interface {
EmitEncryptedFile(Tree) ([]byte, error)
}
// PlainFileEmitter is the interface for emitting plain text files. It provides a way
// to emit plain text files from the internal SOPS representation so that they can be
// shown
type PlainFileEmitter interface {
EmitPlainFile(TreeBranches) ([]byte, error)
}
// ValueEmitter is the interface for emitting a value. It provides a way to emit
// values from the internal SOPS representation so that they can be shown
type ValueEmitter interface {
EmitValue(interface{}) ([]byte, error)
}
// CheckEncrypted is the interface for testing whether a branch contains sops
// metadata. This is used to check whether a file is already encrypted or not.
type CheckEncrypted interface {
HasSopsTopLevelKey(TreeBranch) bool
}
// Store is used to interact with files, both encrypted and unencrypted.
type Store interface {
EncryptedFileLoader
PlainFileLoader
EncryptedFileEmitter
PlainFileEmitter
ValueEmitter
CheckEncrypted
}
// MasterKeyCount returns the number of master keys available
func (m *Metadata) MasterKeyCount() int {
count := 0
for _, group := range m.KeyGroups {
count += len(group)
}
return count
}
// UpdateMasterKeysWithKeyServices encrypts the data key with all master keys using the provided key services
func (m *Metadata) UpdateMasterKeysWithKeyServices(dataKey []byte, svcs []keyservice.KeyServiceClient) (errs []error) {
if len(svcs) == 0 {
return []error{
fmt.Errorf("no key services provided, cannot update master keys"),
}
}
if len(m.KeyGroups) == 0 {
return []error{
fmt.Errorf("no key groups provided"),
}
}
var parts [][]byte
if len(m.KeyGroups) == 1 {
// If there's only one key group, we can't do Shamir. All keys
// in the group encrypt the whole data key.
parts = append(parts, dataKey)
} else {
var err error
if m.ShamirThreshold == 0 {
m.ShamirThreshold = len(m.KeyGroups)
}
log.WithFields(logrus.Fields{
"quorum": m.ShamirThreshold,
"parts": len(m.KeyGroups),
}).Info("Splitting data key with Shamir Secret Sharing")
parts, err = shamir.Split(dataKey, len(m.KeyGroups), int(m.ShamirThreshold))
if err != nil {
errs = append(errs, fmt.Errorf("could not split data key into parts for Shamir: %s", err))
return
}
if len(parts) != len(m.KeyGroups) {
errs = append(errs, fmt.Errorf("not enough parts obtained from Shamir: need %d, got %d", len(m.KeyGroups), len(parts)))
return
}
}
for i, group := range m.KeyGroups {
part := parts[i]
if len(group) == 0 {
return []error{
fmt.Errorf("empty key group provided"),
}
}
for _, key := range group {
svcKey := keyservice.KeyFromMasterKey(key)
var keyErrs []error
encrypted := false
for _, svc := range svcs {
rsp, err := svc.Encrypt(context.Background(), &keyservice.EncryptRequest{
Key: &svcKey,
Plaintext: part,
})
if err != nil {
keyErrs = append(keyErrs, fmt.Errorf("failed to encrypt new data key with master key %q: %w", key.ToString(), err))
continue
}
key.SetEncryptedDataKey(rsp.Ciphertext)
encrypted = true
// Only need to encrypt the key successfully with one service
break
}
if !encrypted {
errs = append(errs, keyErrs...)
}
}
}
m.DataKey = dataKey
return
}
// UpdateMasterKeys encrypts the data key with all master keys
func (m *Metadata) UpdateMasterKeys(dataKey []byte) (errs []error) {
return m.UpdateMasterKeysWithKeyServices(dataKey, []keyservice.KeyServiceClient{
keyservice.NewLocalClient(),
})
}
// GetDataKeyWithKeyServices retrieves the data key, asking KeyServices to decrypt it with each
// MasterKey in the Metadata's KeySources until one of them succeeds.
func (m Metadata) GetDataKeyWithKeyServices(svcs []keyservice.KeyServiceClient, decryptionOrder []string) ([]byte, error) {
if m.DataKey != nil {
return m.DataKey, nil
}
getDataKeyErr := getDataKeyError{
RequiredSuccessfulKeyGroups: m.ShamirThreshold,
GroupResults: make([]error, len(m.KeyGroups)),
}
var parts [][]byte
for i, group := range m.KeyGroups {
part, err := decryptKeyGroup(group, svcs, decryptionOrder)
if err == nil {
parts = append(parts, part)
}
getDataKeyErr.GroupResults[i] = err
}
var dataKey []byte
if len(m.KeyGroups) > 1 {
if len(parts) < m.ShamirThreshold {
return nil, &getDataKeyErr
}
var err error
dataKey, err = shamir.Combine(parts)
if err != nil {
return nil, fmt.Errorf("could not get data key from shamir parts: %s", err)
}
} else {
if len(parts) != 1 {
return nil, &getDataKeyErr
}
dataKey = parts[0]
}
log.Info("Data key recovered successfully")
m.DataKey = dataKey
return dataKey, nil
}
// decryptKeyGroup tries to decrypt the contents of the provided KeyGroup with
// any of the MasterKeys in the KeyGroup with any of the provided key services,
// returning as soon as one key service succeeds.
func decryptKeyGroup(group KeyGroup, svcs []keyservice.KeyServiceClient, decryptionOrder []string) ([]byte, error) {
var keyErrs []error
// Sort MasterKeys in the group so we try them in specific order
// Use sorted indices to avoid group slice modification
indices := sortKeyGroupIndices(group, decryptionOrder)
for _, indexVal := range indices {
key := group[indexVal]
part, err := decryptKey(key, svcs)
if err != nil {
keyErrs = append(keyErrs, err)
} else {
return part, nil
}
}
return nil, decryptKeyErrors(keyErrs)
}
// sortKeyGroupIndices returns indices that would sort the KeyGroup
// according to decryptionOrder
func sortKeyGroupIndices(group KeyGroup, decryptionOrder []string) []int {
priorities := make(map[string]int)
// give ordered weights
for i, v := range decryptionOrder {
priorities[v] = i
}
maxPriority := len(decryptionOrder)
// initialize indices
n := len(group)
indices := make([]int, n)
for i := 0; i < n; i++ {
indices[i] = i
}
sort.SliceStable(indices, func(i, j int) bool {
keyTypeI := group[indices[i]].TypeToIdentifier()
keyTypeJ := group[indices[j]].TypeToIdentifier()
priorityI, ok := priorities[keyTypeI]
if !ok {
priorityI = maxPriority
}
priorityJ, ok := priorities[keyTypeJ]
if !ok {
priorityJ = maxPriority
}
return priorityI < priorityJ
})
return indices
}
// decryptKey tries to decrypt the contents of the provided MasterKey with any
// of the key services, returning as soon as one key service succeeds.
func decryptKey(key keys.MasterKey, svcs []keyservice.KeyServiceClient) ([]byte, error) {
svcKey := keyservice.KeyFromMasterKey(key)
var part []byte
decryptErr := decryptKeyError{
keyName: key.ToString(),
}
for _, svc := range svcs {
// All keys in a key group encrypt the same part, so as soon
// as we decrypt it successfully with one key, we need to
// proceed with the next group
var err error
if part == nil {
var rsp *keyservice.DecryptResponse
rsp, err = svc.Decrypt(
context.Background(),
&keyservice.DecryptRequest{
Ciphertext: key.EncryptedDataKey(),
Key: &svcKey,
})
if err == nil {
part = rsp.Plaintext
}
}
decryptErr.errs = append(decryptErr.errs, err)
}
if part != nil {
return part, nil
}
return nil, &decryptErr
}
// GetDataKey retrieves the data key from the first MasterKey in the Metadata's KeySources that's able to return it,
// using the local KeyService
func (m Metadata) GetDataKey() ([]byte, error) {
return m.GetDataKeyWithKeyServices([]keyservice.KeyServiceClient{
keyservice.NewLocalClient(),
}, nil)
}
// ToBytes converts a string, int, float or bool to a byte representation.
func ToBytes(in interface{}) ([]byte, error) {
switch in := in.(type) {
case string:
return []byte(in), nil
case int:
return []byte(strconv.Itoa(in)), nil
case float64:
return []byte(strconv.FormatFloat(in, 'f', -1, 64)), nil
case bool:
boolB := []byte("True")
if !in {
boolB = []byte("False")
}
return boolB, nil
case []byte:
return in, nil
case Comment:
return ToBytes(in.Value)
default:
return nil, fmt.Errorf("Could not convert unknown type %T to bytes", in)
}
}
// EmitAsMap will emit the tree branches as a map. This is used by the publish
// command for writing decrypted trees to various destinations. Should only be
// used for outputting to data structures in code.
func EmitAsMap(in TreeBranches) (map[string]interface{}, error) {
data := map[string]interface{}{}
for _, branch := range in {
for _, item := range branch {
if _, ok := item.Key.(Comment); ok {
continue
}
val, err := encodeValueForMap(item.Value)
if err != nil {
return nil, err
}
data[item.Key.(string)] = val
}
}
return data, nil
}
func encodeValueForMap(v interface{}) (interface{}, error) {
switch v := v.(type) {
case TreeBranch:
return EmitAsMap([]TreeBranch{v})
default:
return v, nil
}
}