-
Notifications
You must be signed in to change notification settings - Fork 46
/
XV_Lidar_Controller.ino
1022 lines (921 loc) · 34.5 KB
/
XV_Lidar_Controller.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
XV Lidar Controller v1.4.1
Copyright 2014-2016 James LeRoy getSurreal
https://github.com/getSurreal/XV_Lidar_Controller
http://www.getsurreal.com/products/xv-lidar-controller
Contributions by:
Doug Hilton mailto: six.speed (at) yahoo (dot) com
See README for additional information
The F() macro in the Serial statements tells the compiler to keep your strings in PROGMEM
*/
#include <TimerThree.h> // used for ultrasonic PWM motor control
#include <PID.h>
#include <EEPROM.h>
#include <EEPROMAnything.h>
#include <SerialCommand.h>
const int N_ANGLES = 360; // # of angles (0..359)
const int SHOW_ALL_ANGLES = N_ANGLES; // value means 'display all angle data, 0..359'
struct EEPROM_Config {
byte id;
char version[6];
int motor_pwm_pin; // pin connected to mosfet for motor speed control
double rpm_setpoint; // desired RPM (uses double to be compatible with PID library)
double rpm_min;
double rpm_max;
double pwm_max; // max analog value. probably never needs to change from 1023
double pwm_min; // min analog pulse value to spin the motor
int sample_time; // how often to calculate the PID values
// PID tuning values
double Kp;
double Ki;
double Kd;
boolean motor_enable; // to spin the laser or not. No data when not spinning
boolean raw_data; // to retransmit the seiral data to the USB port
boolean show_dist; // controlled by ShowDist and HideDist commands
boolean show_rpm; // controlled by ShowRPM and HideRPM commands
boolean show_interval; // true = show time interval, once per revolution, at angle=0
boolean show_errors; // Show CRC, signal strength and invalid data errors
boolean aryAngles[N_ANGLES]; // array of angles to display
}
xv_config;
const byte EEPROM_ID = 0x07; // used to validate EEPROM initialized
double pwm_val = 500; // start with ~50% power
double pwm_last;
double motor_rpm;
unsigned long now;
unsigned long motor_check_timer = millis();
unsigned long motor_check_interval = 200;
unsigned int rpm_err_thresh = 10; // 2 seconds (10 * 200ms) to shutdown motor with improper RPM and high voltage
unsigned int rpm_err = 0;
unsigned long curMillis;
unsigned long lastMillis = millis();
const unsigned char COMMAND = 0xFA; // Start of new packet
const int INDEX_LO = 0xA0; // lowest index value
const int INDEX_HI = 0xF9; // highest index value
const int N_DATA_QUADS = 4; // there are 4 groups of data elements
const int N_ELEMENTS_PER_QUAD = 4; // viz., 0=distance LSB; 1=distance MSB; 2=sig LSB; 3=sig MSB
// Offsets to bytes within 'Packet'
const int OFFSET_TO_START = 0;
const int OFFSET_TO_INDEX = OFFSET_TO_START + 1;
const int OFFSET_TO_SPEED_LSB = OFFSET_TO_INDEX + 1;
const int OFFSET_TO_SPEED_MSB = OFFSET_TO_SPEED_LSB + 1;
const int OFFSET_TO_4_DATA_READINGS = OFFSET_TO_SPEED_MSB + 1;
const int OFFSET_TO_CRC_L = OFFSET_TO_4_DATA_READINGS + (N_DATA_QUADS * N_ELEMENTS_PER_QUAD);
const int OFFSET_TO_CRC_M = OFFSET_TO_CRC_L + 1;
const int PACKET_LENGTH = OFFSET_TO_CRC_M + 1; // length of a complete packet
// Offsets to the (4) elements of each of the (4) data quads
const int OFFSET_DATA_DISTANCE_LSB = 0;
const int OFFSET_DATA_DISTANCE_MSB = OFFSET_DATA_DISTANCE_LSB + 1;
const int OFFSET_DATA_SIGNAL_LSB = OFFSET_DATA_DISTANCE_MSB + 1;
const int OFFSET_DATA_SIGNAL_MSB = OFFSET_DATA_SIGNAL_LSB + 1;
int Packet[PACKET_LENGTH]; // an input packet
int ixPacket = 0; // index into 'Packet' array
const int VALID_PACKET = 0;
const int INVALID_PACKET = VALID_PACKET + 1;
const byte INVALID_DATA_FLAG = (1 << 7); // Mask for byte 1 of each data quad "Invalid data"
/* REF: https://github.com/Xevel/NXV11/wiki
The bit 7 of byte 1 seems to indicate that the distance could not be calculated.
It's interesting to see that when this bit is set, the second byte is always 80, and the values of the first byte seem to be
only 02, 03, 21, 25, 35 or 50... When it's 21, then the whole block is 21 80 XX XX, but for all the other values it's the
data block is YY 80 00 00 maybe it's a code to say what type of error ? (35 is preponderant, 21 seems to be when the beam is
interrupted by the supports of the cover) .
*/
const byte STRENGTH_WARNING_FLAG = (1 << 6); // Mask for byte 1 of each data quat "Strength Warning"
/*
The bit 6 of byte 1 is a warning when the reported strength is greatly inferior to what is expected at this distance.
This may happen when the material has a low reflectance (black material...), or when the dot does not have the expected
size or shape (porous material, transparent fabric, grid, edge of an object...), or maybe when there are parasitic
reflections (glass... ).
*/
const byte BAD_DATA_MASK = (INVALID_DATA_FLAG | STRENGTH_WARNING_FLAG);
const byte eState_Find_COMMAND = 0; // 1st state: find 0xFA (COMMAND) in input stream
const byte eState_Build_Packet = eState_Find_COMMAND + 1; // 2nd state: build the packet
int eState = eState_Find_COMMAND;
PID rpmPID(&motor_rpm, &pwm_val, &xv_config.rpm_setpoint, xv_config.Kp, xv_config.Ki, xv_config.Kd, DIRECT);
uint8_t inByte = 0; // incoming serial byte
uint8_t motor_rph_high_byte = 0;
uint8_t motor_rph_low_byte = 0;
uint16_t aryDist[N_DATA_QUADS] = {0, 0, 0, 0}; // thre are (4) distances, one for each data quad
// so the maximum distance is 16383 mm (0x3FFF)
uint16_t aryQuality[N_DATA_QUADS] = {0, 0, 0, 0}; // same with 'quality'
uint16_t motor_rph = 0;
uint16_t startingAngle = 0; // the first scan angle (of group of 4, based on 'index'), in degrees (0..359)
SerialCommand sCmd;
boolean ledState = LOW;
#if defined(__AVR_ATmega32U4__) && defined(CORE_TEENSY) // if Teensy 2.0
const int ledPin = 11;
#elif defined(__AVR_ATmega32U4__) // if Leonardo (no LED for Pro Micro)
const int ledPin = 13;
#elif defined(__MK20DX256__) // if Teensy 3.1
const int ledPin = 13;
#elif defined(__MKL26Z64__) // if Teensy LC
const int ledPin = 13;
#endif
// initialization (before 'loop')
void setup() {
EEPROM_readAnything(0, xv_config);
if ( xv_config.id != EEPROM_ID) { // verify EEPROM values have been initialized
initEEPROM();
}
pinMode(xv_config.motor_pwm_pin, OUTPUT);
Serial.begin(115200); // USB serial
#if defined(__AVR_ATmega32U4__)
Serial1.begin(115200); // XV LDS data
#elif defined(__MK20DX256__) // if Teensy 3.1
Serial1.begin(115200); // XV LDS data
#elif defined(__MKL26Z64__) // if Teensy LC
Serial1.begin(115200); // XV LDS data
#endif
Timer3.initialize(30); // set PWM frequency to 32.768kHz
rpmPID.SetOutputLimits(xv_config.pwm_min, xv_config.pwm_max);
rpmPID.SetSampleTime(xv_config.sample_time);
rpmPID.SetTunings(xv_config.Kp, xv_config.Ki, xv_config.Kd);
rpmPID.SetMode(AUTOMATIC);
initSerialCommands();
pinMode(ledPin, OUTPUT);
eState = eState_Find_COMMAND;
for (ixPacket = 0; ixPacket < PACKET_LENGTH; ixPacket++) // Initialize
Packet[ixPacket] = 0;
ixPacket = 0;
}
void loop() {
byte aryInvalidDataFlag[N_DATA_QUADS] = {0, 0, 0, 0}; // non-zero = INVALID_DATA_FLAG or STRENGTH_WARNING_FLAG is set
sCmd.readSerial(); // check for incoming serial commands
if (Serial1.available() > 0) { // read byte from LIDAR and relay to USB
inByte = Serial1.read(); // get incoming byte:
if (xv_config.raw_data)
Serial.write(inByte); // relay
// Switch, based on 'eState':
// State 1: We're scanning for 0xFA (COMMAND) in the input stream
// State 2: Build a complete data packet
if (eState == eState_Find_COMMAND) { // flush input until we get COMMAND byte
if (inByte == COMMAND) {
eState++; // switch to 'build a packet' state
Packet[ixPacket++] = inByte; // store 1st byte of data into 'Packet'
}
}
else { // eState == eState_Build_Packet
Packet[ixPacket++] = inByte; // keep storing input into 'Packet'
if (ixPacket == PACKET_LENGTH) { // we've got all the input bytes, so we're done building this packet
if (eValidatePacket() == VALID_PACKET) { // Check packet CRC
startingAngle = processIndex(); // get the starting angle of this group (of 4), e.g., 0, 4, 8, 12, ...
processSpeed(); // process the speed
// process each of the (4) sets of data in the packet
for (int ix = 0; ix < N_DATA_QUADS; ix++) // process the distance
aryInvalidDataFlag[ix] = processDistance(ix);
for (int ix = 0; ix < N_DATA_QUADS; ix++) { // process the signal strength (quality)
aryQuality[ix] = 0;
if (aryInvalidDataFlag[ix] == 0)
processSignalStrength(ix);
}
if (xv_config.show_dist) { // the 'ShowDistance' command is active
for (int ix = 0; ix < N_DATA_QUADS; ix++) {
if (xv_config.aryAngles[startingAngle + ix]) { // if we're supposed to display that angle
if (aryInvalidDataFlag[ix] & BAD_DATA_MASK) { // if LIDAR reported a data error...
if (xv_config.show_errors) { // if we're supposed to show data errors...
Serial.print(F("A,"));
Serial.print(startingAngle + ix);
Serial.print(F(","));
if (aryInvalidDataFlag[ix] & INVALID_DATA_FLAG)
Serial.println(F("I"));
if (aryInvalidDataFlag[ix] & STRENGTH_WARNING_FLAG)
Serial.println(F("S"));
}
}
else { // show clean data
Serial.print(F("A,"));
Serial.print(startingAngle + ix);
Serial.print(F(","));
Serial.print(int(aryDist[ix]));
Serial.print(F(","));
Serial.println(aryQuality[ix]);
}
} // if (xv_config.aryAngles[startingAngle + ix])
} // for (int ix = 0; ix < N_DATA_QUADS; ix++)
} // if (xv_config.show_dist)
} // if (eValidatePacket() == 0
else if (xv_config.show_errors) { // we have encountered a CRC error
Serial.println(F("C,CRC"));
}
// initialize a bunch of stuff before we switch back to State 1
for (int ix = 0; ix < N_DATA_QUADS; ix++) {
aryDist[ix] = 0;
aryQuality[ix] = 0;
aryInvalidDataFlag[ix] = 0;
}
for (ixPacket = 0; ixPacket < PACKET_LENGTH; ixPacket++) // clear out this packet
Packet[ixPacket] = 0;
ixPacket = 0;
eState = eState_Find_COMMAND; // This packet is done -- look for next COMMAND byte
} // if (ixPacket == PACKET_LENGTH)
} // if (eState == eState_Find_COMMAND)
} // if (Serial1.available() > 0)
if (xv_config.motor_enable) {
rpmPID.Compute();
if (pwm_val != pwm_last) {
Timer3.pwm(xv_config.motor_pwm_pin, pwm_val); // replacement for analogWrite()
pwm_last = pwm_val;
}
motorCheck();
} // if (xv_config.motor_enable)
} // loop
/*
processIndex - Process the packet element 'index'
index is the index byte in the 90 packets, going from A0 (packet 0, readings 0 to 3) to F9
(packet 89, readings 356 to 359).
Enter with: N/A
Uses: Packet
ledState gets toggled if angle = 0
ledPin = which pin the LED is connected to
ledState = LED on or off
xv_config.show_dist = true if we're supposed to show distance
curMillis = milliseconds, now
lastMillis = milliseconds, last time through this subroutine
xv_config.show_interval = true ==> display time interval once per revolution, at angle 0
Calls: digitalWrite() - used to toggle LED pin
Serial.print
Returns: The first angle (of 4) in the current 'index' group
*/
uint16_t processIndex() {
uint16_t angle = 0;
uint16_t data_4deg_index = Packet[OFFSET_TO_INDEX] - INDEX_LO;
angle = data_4deg_index * N_DATA_QUADS; // 1st angle in the set of 4
if (angle == 0) {
if (ledState) {
ledState = LOW;
}
else {
ledState = HIGH;
}
digitalWrite(ledPin, ledState);
if (xv_config.show_rpm) {
Serial.print(F("R,"));
Serial.print((int)motor_rpm);
Serial.print(F(","));
Serial.println((int)pwm_val);
}
curMillis = millis();
if (xv_config.show_interval) {
Serial.print(F("T,")); // Time Interval in ms since last complete revolution
Serial.println(curMillis - lastMillis);
}
lastMillis = curMillis;
} // if (angle == 0)
return angle;
}
/*
processSpeed- Process the packet element 'speed'
speed is two-bytes of information, little-endian. It represents the speed, in 64th of RPM (aka value
in RPM represented in fixed point, with 6 bits used for the decimal part).
Enter with: N/A
Uses: Packet
angle = if 0 then enable display of RPM and PWM
xv_config.show_rpm = true if we're supposed to display RPM and PWM
Calls: Serial.print
*/
void processSpeed() {
motor_rph_low_byte = Packet[OFFSET_TO_SPEED_LSB];
motor_rph_high_byte = Packet[OFFSET_TO_SPEED_MSB];
motor_rph = (motor_rph_high_byte << 8) | motor_rph_low_byte;
motor_rpm = float( (motor_rph_high_byte << 8) | motor_rph_low_byte ) / 64.0;
}
/*
Data 0 to Data 3 are the 4 readings. Each one is 4 bytes long, and organized as follows :
byte 0 : <distance 7:0>
byte 1 : <"invalid data" flag> <"strength warning" flag> <distance 13:8>
byte 2 : <signal strength 7:0>
byte 3 : <signal strength 15:8>
*/
/*
processDistance- Process the packet element 'distance'
Enter with: iQuad = which one of the (4) readings to process, value = 0..3
Uses: Packet
dist[] = sets distance to object in binary: ISbb bbbb bbbb bbbb
so maximum distance is 0x3FFF (16383 decimal) millimeters (mm)
Calls: N/A
Exits with: 0 = okay
Error: 1 << 7 = INVALID_DATA_FLAG is set
1 << 6 = STRENGTH_WARNING_FLAG is set
*/
byte processDistance(int iQuad) {
uint8_t dataL, dataM;
aryDist[iQuad] = 0; // initialize
int iOffset = OFFSET_TO_4_DATA_READINGS + (iQuad * N_DATA_QUADS) + OFFSET_DATA_DISTANCE_LSB;
// byte 0 : <distance 7:0> (LSB)
// byte 1 : <"invalid data" flag> <"strength warning" flag> <distance 13:8> (MSB)
dataM = Packet[iOffset + 1]; // get MSB of distance data + flags
if (dataM & BAD_DATA_MASK) // if either INVALID_DATA_FLAG or STRENGTH_WARNING_FLAG is set...
return dataM & BAD_DATA_MASK; // ...then return non-zero
dataL = Packet[iOffset]; // LSB of distance data
aryDist[iQuad] = dataL | ((dataM & 0x3F) << 8);
return 0; // okay
}
/*
processSignalStrength- Process the packet element 'signal strength'
Enter with: iQuad = which one of the (4) readings to process, value = 0..3
Uses: Packet
quality[] = signal quality
Calls: N/A
*/
void processSignalStrength(int iQuad) {
uint8_t dataL, dataM;
aryQuality[iQuad] = 0; // initialize
int iOffset = OFFSET_TO_4_DATA_READINGS + (iQuad * N_DATA_QUADS) + OFFSET_DATA_SIGNAL_LSB;
dataL = Packet[iOffset]; // signal strength LSB
dataM = Packet[iOffset + 1];
aryQuality[iQuad] = dataL | (dataM << 8);
}
/*
eValidatePacket - Validate 'Packet'
Enter with: 'Packet' is ready to check
Uses: CalcCRC
Exits with: 0 = Packet is okay
Error: non-zero = Packet is no good
*/
byte eValidatePacket() {
unsigned long chk32;
unsigned long checksum;
const int bytesToCheck = PACKET_LENGTH - 2;
const int CalcCRC_Len = bytesToCheck / 2;
unsigned int CalcCRC[CalcCRC_Len];
byte b1a, b1b, b2a, b2b;
int ix;
for (int ix = 0; ix < CalcCRC_Len; ix++) // initialize 'CalcCRC' array
CalcCRC[ix] = 0;
// Perform checksum validity test
for (ix = 0; ix < bytesToCheck; ix += 2) // build 'CalcCRC' array
CalcCRC[ix / 2] = Packet[ix] + ((Packet[ix + 1]) << 8);
chk32 = 0;
for (ix = 0; ix < CalcCRC_Len; ix++)
chk32 = (chk32 << 1) + CalcCRC[ix];
checksum = (chk32 & 0x7FFF) + (chk32 >> 15);
checksum &= 0x7FFF;
b1a = checksum & 0xFF;
b1b = Packet[OFFSET_TO_CRC_L];
b2a = checksum >> 8;
b2b = Packet[OFFSET_TO_CRC_M];
if ((b1a == b1b) && (b2a == b2b))
return VALID_PACKET; // okay
else
return INVALID_PACKET; // non-zero = bad CRC
}
/*
initEEPROM
*/
void initEEPROM() {
xv_config.id = 0x07;
strcpy(xv_config.version, "1.4.0");
#if defined(__AVR_ATmega32U4__) && defined(CORE_TEENSY) // if Teensy 2.0
xv_config.motor_pwm_pin = 9; // pin connected N-Channel Mosfet
#elif defined(__AVR_ATmega32U4__) // if Leonardo or Pro Micro
xv_config.motor_pwm_pin = 5; // pin connected N-Channel Mosfet
#elif defined(__MK20DX256__) // if Teensy 3.1
xv_config.motor_pwm_pin = 33; // pin connected N-Channel Mosfet
#elif defined(__MKL26Z64__) // if Teensy LC
xv_config.motor_pwm_pin = 4; // pin connected N-Channel Mosfet
#endif
xv_config.rpm_setpoint = 200; // desired RPM
xv_config.rpm_min = 200;
xv_config.rpm_max = 300;
xv_config.pwm_min = 100;
xv_config.pwm_max = 1023;
xv_config.sample_time = 20;
xv_config.Kp = 2.0;
xv_config.Ki = 1.0;
xv_config.Kd = 0.0;
xv_config.motor_enable = true;
xv_config.raw_data = true;
xv_config.show_dist = false;
xv_config.show_rpm = false;
xv_config.show_interval = false;
xv_config.show_errors = false;
for (int ix = 0; ix < N_ANGLES; ix++)
xv_config.aryAngles[ix] = true;
EEPROM_writeAnything(0, xv_config);
}
/*
initSerialCommands
*/
void initSerialCommands() {
sCmd.addCommand("help", help);
sCmd.addCommand("Help", help);
sCmd.addCommand("?", help);
sCmd.addCommand("ShowConfig", showConfig);
sCmd.addCommand("SaveConfig", saveConfig);
sCmd.addCommand("ResetConfig", initEEPROM);
sCmd.addCommand("SetAngle", setAngle);
sCmd.addCommand("SetRPM", setRPM);
sCmd.addCommand("SetKp", setKp);
sCmd.addCommand("SetKi", setKi);
sCmd.addCommand("SetKd", setKd);
sCmd.addCommand("SetSampleTime", setSampleTime);
sCmd.addCommand("MotorOff", motorOff);
sCmd.addCommand("MotorOn", motorOn);
sCmd.addCommand("ShowRaw", showRaw);
sCmd.addCommand("HideRaw", hideRaw);
sCmd.addCommand("ShowDist", showDist);
sCmd.addCommand("HideDist", hideDist);
sCmd.addCommand("ShowRPM", showRPM);
sCmd.addCommand("HideRPM", hideRPM);
sCmd.addCommand("ShowErrors", showErrors);
sCmd.addCommand("HideErrors", hideErrors);
sCmd.addCommand("ShowInterval", showInterval);
sCmd.addCommand("HideInterval", hideInterval);
sCmd.addCommand("ShowAll", showAll);
sCmd.addCommand("HideAll", hideAll);
}
/*
showAll - Show Dist, Errors, RPM, and Interval data
*/
void showAll() {
showDist();
showErrors();
showRPM();
showInterval();
}
/*
hideAll - Hide Dist, Errors, RPM, and Interval data
*/
void hideAll() {
hideDist();
hideErrors();
hideRPM();
hideInterval();
}
/*
showInterval - enable display of Time interval (which happens once per revolution, at angle 0
*/
void showInterval() {
xv_config.show_interval = true;
if (xv_config.show_dist == false) { // suppress activity message if we're executing 'show distance'
Serial.println(F(" "));
Serial.println(F("Showing time interval (ms per revolution)"));
}
}
/*
hideInterval - suppress display of Time interval
*/
void hideInterval() {
xv_config.show_interval = false;
if (xv_config.show_dist == false) { // suppress activity message if we're executing 'show distance'
Serial.println(F(" "));
Serial.println(F("Hiding time interval"));
}
}
/*
showErrors
*/
void showErrors() {
xv_config.show_errors = true; // enable error display
if (xv_config.show_dist == false) { // suppress activity message if we're executing 'show distance'
Serial.println(F(" "));
Serial.println(F("Showing errors"));
}
}
/*
hideErrors
*/
void hideErrors() { // disable error display
xv_config.show_errors = false;
if (xv_config.show_dist == false) { // suppress activity message if we're executing 'show distance'
Serial.println(F(" "));
Serial.println(F("Hiding errors"));
}
}
/*
showRPM
*/
void showRPM() {
xv_config.show_rpm = true;
if (xv_config.raw_data == true) {
hideRaw();
}
if (xv_config.show_dist == false) { // suppress activity message if we're executing 'show distance'
Serial.println(F(" "));
Serial.println(F("Showing RPM data"));
}
}
/*
hideRPM
*/
void hideRPM() {
xv_config.show_rpm = false;
if (xv_config.show_dist == false) { // suppress activity message if we're executing 'show distance'
Serial.println(F(" "));
Serial.println(F("Hiding RPM data"));
}
}
void showDist() {
hideRaw();
if (xv_config.show_dist == false) { // suppress activity message if we're executing 'show distance'
Serial.println(F(" "));
Serial.println(F("Code,Angle,Distance(mm),Signal strength"));
}
xv_config.show_dist = true;
}
void hideDist() {
xv_config.show_dist = false;
if (xv_config.show_dist == false) { // suppress activity message if we're executing 'show distance'
Serial.println(F(" "));
Serial.println(F("Hiding Distance data"));
}
}
/*
doSetAngle - Multi-angle range(s) implementation - DSH
Command: SetAngles ddd, ddd-ddd, etc.
Enter with: N/A
Uses: xv_config.aryAngles (an array of 360 booleans) is set to appropriate values
Calls: showDist
Exits with: N/A
TEST THIS STRING: SetAngles 16-20, 300-305, 123-124, 10
*/
void setAngle() {
char c, *arg;
boolean syntax_error = false;
int doing_from_to, from, to, ix, lToken, n_groups = 0;
for (ix = 0; ix < N_ANGLES; ix++) // initialize
xv_config.aryAngles[ix] = false;
doing_from_to = 0; // state = doing 'from'
// Make sure that there is at least 1 angle or group of angles present
do {
arg = sCmd.next(); // get the next token
if (arg == NULL) { // it's empty -- just exit
sCmd.readSerial();
arg = sCmd.next();
break;
}
// see if the token has an embedded "-", meaning from - to
lToken = strlen(arg); // get the length of the current token
for (ix = 0; ix < lToken; ix++) {
c = arg[ix];
if (c == ',') { // optional trailing comma
doing_from_to = 0;
break;
}
else if (c == '-') { // optional '-' means "from - to"
to = 0;
doing_from_to = 1; // from now on, we're doing 'to'
}
else if (c == ' ') { // ignore blanks
Serial.println(F("{ }"));
}
else if ((c >= '0') && (c <= '9')) {
if (doing_from_to == 0) {
from *= 10;
from += c - '0';
to = from; // default to = from
n_groups++; // count the number of active groups (s/b >= 1)
}
else {
to *= 10;
to += c - '0';
}
}
else {
syntax_error = true;
n_groups = 0;
break;
}
} // for (ix = 0; ix < lToken; ix++)
// validate 'from' and 'to' and set 'xv_config.aryAngles' with correct values
if ((from >= 0) && (from < N_ANGLES) && (to >= 0) && (to < N_ANGLES)) {
if (to >= from) {
for (ix = from; ix <= to; ix++) {
xv_config.aryAngles[ix] = true;
}
}
else {
syntax_error = true;
break;
}
}
else {
syntax_error = true;
break;
}
from = 0;
to = 0;
doing_from_to = 0;
} // do
while (arg != NULL);
if (n_groups == 0)
syntax_error = true;
// Handle syntax errors
if (syntax_error) {
Serial.println(F(" "));
Serial.println(F("Incorrect syntax"));
Serial.println(F(" Example: SetAngle 0, 15-30, 45-50, 10"));
Serial.println(F(" Example: SetAngle 0-359 to show all angles."));
Serial.println(F("Notes: Use a space after each comma"));
Serial.println(F(" No particular order is required"));
Serial.println(F(" In a from-to pair, the 1st value must be lowest. From-to pairs can overlap ranges."));
}
else { // no errors detected, display the angles and start
// We're ready to process multiple angles
Serial.println(F(""));
Serial.print(F("Angles:"));
for (int ix = 0; ix < N_ANGLES; ix++) { // display the angle array
if (xv_config.aryAngles[ix]) {
Serial.print(ix, DEC);
Serial.print(F(","));
}
}
Serial.println(F(""));
showDist();
} // if not (syntax_error)
}
void motorOff() {
xv_config.motor_enable = false;
Timer3.pwm(xv_config.motor_pwm_pin, 0);
Serial.println(F(" "));
Serial.println(F("Motor off"));
}
void motorOn() {
xv_config.motor_enable = true;
Timer3.pwm(xv_config.motor_pwm_pin, pwm_val);
rpm_err = 0; // reset rpm error
Serial.println(F(" "));
Serial.println(F("Motor on"));
}
void motorCheck() { // Make sure the motor RPMs are good else shut it down
now = millis();
if (now - motor_check_timer > motor_check_interval) {
if ((motor_rpm < xv_config.rpm_min or motor_rpm > xv_config.rpm_max) and pwm_val > 1000) {
rpm_err++;
}
else {
rpm_err = 0;
}
if (rpm_err > rpm_err_thresh) {
motorOff();
ledState = LOW;
digitalWrite(ledPin, ledState);
}
motor_check_timer = millis();
}
}
void hideRaw() {
xv_config.raw_data = false;
//Serial.println(F(" "));
//Serial.println(F("Raw lidar data disabled"));
}
void showRaw() {
xv_config.raw_data = true;
hideDist();
hideRPM();
//Serial.println(F(" "));
//Serial.println(F("Lidar data enabled"));
}
void setRPM() {
double sVal = 0.0;
char *arg;
boolean syntax_error = false;
arg = sCmd.next();
if (arg != NULL) {
sVal = atof(arg); // Converts a char string to a float
if (sVal < xv_config.rpm_min) {
sVal = xv_config.rpm_min;
Serial.println(F(" "));
Serial.print(F("RPM too low. Setting to minimum "));
Serial.println(xv_config.rpm_min);
}
if (sVal > xv_config.rpm_max) {
sVal = xv_config.rpm_max;
Serial.println(F(" "));
Serial.print(F("RPM too high. Setting to maximum "));
Serial.println(xv_config.rpm_max);
}
}
else {
syntax_error = true;
}
arg = sCmd.next();
if (arg != NULL) {
syntax_error = true;
}
if (syntax_error) {
Serial.println(F(" "));
Serial.println(F("Incorrect syntax. Example: SetRPM 200"));
}
else {
Serial.print(F("Old RPM setpoint:"));
Serial.println(xv_config.rpm_setpoint);
xv_config.rpm_setpoint = sVal;
//Serial.println(F(" "));
Serial.print(F("New RPM setpoint: "));
Serial.println(sVal);
}
}
void setKp() {
double sVal = 0.0;
char *arg;
boolean syntax_error = false;
arg = sCmd.next();
if (arg != NULL) {
sVal = atof(arg); // Converts a char string to a float
}
else {
syntax_error = true;
}
arg = sCmd.next();
if (arg != NULL) {
syntax_error = true;
}
if (syntax_error) {
Serial.println(F(" "));
Serial.println(F("Incorrect syntax. Example: SetKp 1.0"));
}
else {
Serial.println(F(" "));
Serial.print(F("Setting Kp to: "));
Serial.println(sVal);
xv_config.Kp = sVal;
rpmPID.SetTunings(xv_config.Kp, xv_config.Ki, xv_config.Kd);
}
}
void setKi() {
double sVal = 0.0;
char *arg;
boolean syntax_error = false;
arg = sCmd.next();
if (arg != NULL) {
sVal = atof(arg); // Converts a char string to a float
}
else {
syntax_error = true;
}
arg = sCmd.next();
if (arg != NULL) {
syntax_error = true;
}
if (syntax_error) {
Serial.println(F(" "));
Serial.println(F("Incorrect syntax. Example: SetKi 0.5"));
}
else {
Serial.println(F(" "));
Serial.print(F("Setting Ki to: "));
Serial.println(sVal);
xv_config.Ki = sVal;
rpmPID.SetTunings(xv_config.Kp, xv_config.Ki, xv_config.Kd);
}
}
void setKd() {
double sVal = 0.0;
char *arg;
boolean syntax_error = false;
arg = sCmd.next();
if (arg != NULL) {
sVal = atof(arg); // Converts a char string to a float
}
else {
syntax_error = true;
}
arg = sCmd.next();
if (arg != NULL) {
syntax_error = true;
}
if (syntax_error) {
Serial.println(F(" "));
Serial.println(F("Incorrect syntax. Example: SetKd 0.001"));
}
else {
Serial.println(F(" "));
Serial.print(F("Setting Kd to: "));
Serial.println(sVal);
xv_config.Kd = sVal;
rpmPID.SetTunings(xv_config.Kp, xv_config.Ki, xv_config.Kd);
}
}
void setSampleTime() {
double sVal = 0.0;
char *arg;
boolean syntax_error = false;
arg = sCmd.next();
if (arg != NULL) {
sVal = atoi(arg); // Converts a char string to an integer
}
else {
syntax_error = true;
}
arg = sCmd.next();
if (arg != NULL) {
syntax_error = true;
}
if (syntax_error) {
Serial.println(F(" "));
Serial.println(F("Incorrect syntax. Example: SetSampleTime 20"));
}
else {
Serial.println(F(" "));
Serial.print(F("Setting Sample time to: "));
Serial.println(sVal);
xv_config.sample_time = sVal;
rpmPID.SetSampleTime(xv_config.sample_time);
}
}
void help() {
if (xv_config.raw_data == true) {
hideRaw();
}
Serial.println(F(" "));
Serial.println(F(" "));
Serial.print(F("XV Lidar Controller Firmware Version "));
Serial.println(xv_config.version);
Serial.print(F("GetSurreal.com *"));
Serial.println(F(" "));
Serial.println(F(" "));
Serial.println(F("List of available commands"));
Serial.println(F(" "));
Serial.println(F("Control commands"));
Serial.println(F(" ShowConfig - Show the running configuration"));
Serial.println(F(" SaveConfig - Save the running configuration to EEPROM"));
Serial.println(F(" ResetConfig - Restore the original configuration"));
Serial.println(F(" SetAngle - Show distance data for a multiple angles (Ex: SetAngle 0, 15-30, 45-50, 10)"));
Serial.println(F(" SetRPM - Set the desired rotation speed (min: 180, max: 349)"));
Serial.println(F(" MotorOff - Stop spinning the lidar"));
Serial.println(F(" MotorOn - Enable spinning of the lidar"));
Serial.println(F(" "));
Serial.println(F("Data commands"));
Serial.println(F(" ShowRaw - Enable the output of the raw lidar data (default)"));
Serial.println(F(" HideRaw - Stop outputting the raw data from the lidar"));
Serial.println(F(" ShowDist - Show angles with distance data"));
Serial.println(F(" HideDist - Hide the distance data"));
Serial.println(F(" ShowErrors - Show all error types (CRC, Signal Strength, and Invalid"));
Serial.println(F(" HideErrors - Hide angles with errors"));
Serial.println(F(" ShowRPM - Show the rotation speed"));
Serial.println(F(" HideRPM - Hide the rotation speed"));
Serial.println(F(" ShowInterval - Show time interval per revolution in ms, at angle=0"));
Serial.println(F(" HideInterval - Hide time interval"));
Serial.println(F(" ShowAll - Show the distance, errors, RPMs and interval data"));
Serial.println(F(" HideAll - Hide the distance, errors, RPMs and interval data"));
Serial.println(F(" "));
Serial.println(F("PID commands"));
Serial.println(F(" SetKp - Set the proportional gain"));
Serial.println(F(" SetKi - Set the integral gain"));
Serial.println(F(" SetKd - Set the derivative gain"));
Serial.println(F(" SetSampleTime - Set the frequency the PID is calculated (ms)"));
Serial.println(F(" "));
Serial.println(F("Output comma-separated format:"));
Serial.println(F(" A,<Angle>,<Distance in mm>,<Strength>"));
Serial.println(F(" C,CRC error was generated by LIDAR"));
Serial.println(F(" R,<RPMs>,<PWM value>"));
Serial.println(F(" T,<Time interval in milliseconds>"));
Serial.println(F(" "));
Serial.println(F("Errors:"));
Serial.println(F(" CRC = CRC Error"));
Serial.println(F(" I = LIDAR reports Invalid data for this angle"));
Serial.println(F(" S = LIDAR reports Poor signal strength for this angle"));
Serial.println(F(" "));
}
void showConfig() {
if (xv_config.raw_data == true) {
hideRaw();
}
Serial.println(F(" "));
Serial.println(F(" "));
Serial.print(F("XV Lidar Controller Firmware Version "));
Serial.println(xv_config.version);
Serial.print(F("GetSurreal.com"));
Serial.println(F(" "));
Serial.println(F(" "));
Serial.print(F("PWM pin: "));
Serial.println(xv_config.motor_pwm_pin);
Serial.print(F("Target RPM: "));
Serial.println(xv_config.rpm_setpoint);
Serial.print(F("Max PWM: "));
Serial.println(xv_config.pwm_max);
Serial.print(F("Min PWM: "));
Serial.println(xv_config.pwm_min);
Serial.print(F("PID Kp: "));
Serial.println(xv_config.Kp);
Serial.print(F("PID Ki: "));
Serial.println(xv_config.Ki);
Serial.print(F("PID Kd: "));
Serial.println(xv_config.Kd);
Serial.print(F("SampleTime: "));
Serial.println(xv_config.sample_time);
Serial.print(F("Motor Enable: "));
Serial.println(xv_config.motor_enable);
Serial.print(F("Show Raw Data: "));
Serial.println(xv_config.raw_data);