forked from fatchord/WaveRNN
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
executable file
·76 lines (68 loc) · 2.82 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import torch
import numpy as np
from tqdm import tqdm
from multiprocessing import Pool
from torch.utils.data import Dataset
class MyDataset(Dataset):
def __init__(self, ids, path, mel_len, hop_length, mode, pad, ap, eval=False):
self.path = path
self.metadata = ids
self.eval = eval
self.mel_len = mel_len
self.pad = pad
self.hop_length = hop_length
self.mode = mode
self.ap = ap
#wav_files = [f"{self.path}wavs/{file}.wav" for file in self.metadata]
#with Pool(4) as pool:
# self.wav_cache = pool.map(self.ap.load_wav, wav_files)
def __getitem__(self, index):
file = self.metadata[index]
m = np.load(f"{self.path}mel/{file}.npy")
#x = self.wav_cache[index]
if 5 > m.shape[-1]:
print(' [!] Instance is too short! : {}'.format(file))
self.metadata[index] = self.metadata[index + 1]
file = self.metadata[index]
m = np.load(f"{self.path}mel/{file}.npy")
if self.mode in ['gauss', 'mold']:
x = self.ap.load_wav(f"{self.path}wavs/{file}.wav")
elif type(self.mode) is int:
x = np.load(f'{self.path}quant/{file}.npy')
else:
raise RuntimeError("Unknown dataset mode - ", self.mode)
return m, x, file
def __len__(self):
return len(self.metadata)
def collate(self, batch):
min_mel_len = np.min([x[0].shape[-1] for x in batch])
active_mel_len = np.minimum(min_mel_len - 2 * self.pad, self.mel_len)
seq_len = active_mel_len * self.hop_length
pad = self.pad # padding against resnet
mel_win = active_mel_len + 2 * pad
max_offsets = [x[0].shape[-1] - (mel_win + 2 * pad) for x in batch]
if self.eval:
mel_offsets = [10] * len(batch)
else:
mel_offsets = [np.random.randint(0, np.maximum(1, offset)) for offset in max_offsets]
sig_offsets = [(offset + pad) * self.hop_length for offset in mel_offsets]
mels = [
x[0][:, mel_offsets[i] : mel_offsets[i] + mel_win]
for i, x in enumerate(batch)
]
coarse = [
x[1][sig_offsets[i] : sig_offsets[i] + seq_len + 1]
for i, x in enumerate(batch)
]
mels = np.stack(mels).astype(np.float32)
if self.mode in ['gauss', 'mold']:
coarse = np.stack(coarse).astype(np.float32)
coarse = torch.FloatTensor(coarse)
x_input = coarse[:, :seq_len]
elif type(self.mode) is int:
coarse = np.stack(coarse).astype(np.int64)
coarse = torch.LongTensor(coarse)
x_input = 2 * coarse[:, :seq_len].float() / (2 ** self.mode - 1.0) - 1.0
y_coarse = coarse[:, 1:]
mels = torch.FloatTensor(mels)
return x_input, mels, y_coarse