-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathanalytics.py
87 lines (67 loc) · 2.92 KB
/
analytics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from main import *
from frameCollect import *
import matplotlib
import matplotlib.pyplot as plt
import pickle
import os
import shutil
def plot(x, y, name, ylabel="residualMetric"): # plot metric on graph
assert len(x) == len(y)
fig = plt.figure()
ax = plt.subplot(111)
ax.plot(x, y, label=f'$x = Frame, $y = {ylabel}')
plt.title(name)
ax.legend()
fig.savefig(f'PLOT/{name}_plot.png')
def graphSession(filepath, pframeSet=300, countMax = 1000, skip=0, process=["residualMetric"], meanMetricSize=10): # create graph of mean compounded residualMetric
"""
Graph the metric chosen in process for the video in filepath
filepath: path to video file
pframeSet: number of predicted frames every i-frame
countMax: number of data points on the graphs
skip: how many frames to skip per frame
process: 3 Parts, process 1 = residualMetric, process 2 = meanMetric
Process 1: create graph of residualMetric per I-Frame interval
Process 2: create graph of mean compounded residualMetric for x Frames specified by meanMetricSize
"""
assert "residualMetric" in process or "meanMetric" in process
video_name, video, frame_width, frame_height, videofps, videoframecount = read_video(filepath)
running = True
count = 0
residualTally = []
meanTally = []
meanBuffer = []
running, frame = read_frame(video, skipFrame=skip)
while running and count < countMax:
print(f"Count {count} of {countMax}")
if count % pframeSet == 0:
print("REESTABLISHING I-FRAME")
iframe = frame
residualMetric, residualFrame = main(iframe, frame)
if "residualMetric" in process:
residualTally.append(residualMetric)
if "meanMetric" in process:
meanBuffer.append(residualMetric)
if len(meanBuffer) == meanMetricSize:
meanTally.append(sum(meanBuffer)/meanMetricSize)
meanBuffer.pop(0)
running, frame = read_frame(video)
count+=1
print(f"Residual Tally: {residualTally}")
metricRange = np.arange(count)
if "residualMetric" in process:
plot(metricRange, residualTally, f"residual_{video_name}_{pframeSet}predF{skip}skipF", ylabel="residualMetric")
if "meanMetric" in process:
meanMetricRange = np.arange(len(meanTally))
plot(meanMetricRange, meanTally, f"mean_{video_name}_{pframeSet}predF{skip}skipF{meanMetricSize}meanSize", ylabel=f"{meanMetricSize} Frame Mean Compounded residualMetric")
return residualTally, meanTally
if __name__ == "__main__":
timer = time.time()
"""
videopathA = "VIDEOS/UAV123_person1_resized360.mp4"
PROCESS = ["meanMetric"]
graphSession(videopathA, pframeSet=5, process=PROCESS, meanMetricSize=5)
graphSession(videopathA, pframeSet=10, process=PROCESS, meanMetricSize=10)
"""
totTime = time.time() - timer
print(f"Done, executed in {totTime:.2f} s")