Skip to content

Commit 48a2024

Browse files
committed
Fx print lines for adapt simps lines I've red eps for; upd comp time data
1 parent bcf7ec9 commit 48a2024

File tree

4 files changed

+18
-18
lines changed

4 files changed

+18
-18
lines changed

Project.toml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
name = "FunctionIntegrator"
22
uuid = "7685536e-2581-4f83-bef1-2ba363c9cb91"
33
authors = ["Brenton Horne <[email protected]>"]
4-
version = "0.5.0"
4+
version = "0.5.1"
55

66
[deps]
77
FastGaussQuadrature = "442a2c76-b920-505d-bb47-c5924d526838"

test/Computation_times_Travis_105.2.jl renamed to test/Computation_times_Travis_108.2.jl

Lines changed: 15 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -1,19 +1,19 @@
1-
# Taken from https://travis-ci.com/github/fusion809/FunctionIntegrator.jl/jobs/364132770
1+
# Taken from https://travis-ci.com/github/fusion809/FunctionIntegrator.jl/jobs/365077894
22
# 10th entry is simppen
3-
L_adaptive_simpsons = [0.486231; 0.064895; 0.000165; 0.037012; 0.032331; 0.030399; 0.023287; 0.023555; 0.099551; 9.451517; 0.039571; 0.000751; 0.000284];
4-
L_chebyshev1 = [0.999828; 0.378005; 0.044058; 0.080038; 0.098033; 0.088635; 0.083370; 0.083933; 0.060513; 0.329102; 0.085079; 0.046761; 0.043942];
5-
L_chebyshev2 = [0.122684; 0.060723; 0.043665; 0.116662; 0.095775; 0.125398; 0.100822; 0.099486; 0.062181; 8.654814; 0.085809; 0.049589; 0.044264];
6-
L_chebyshev3 = [0.148326; 0.069086; 0.048887; 0.093295; 0.092409; 0.098670; 0.106251; 0.107016; 0.067388; 3.168286; 0.084671; 0.054494; 0.049837];
7-
L_chebyshev4 = [0.197283; 0.067486; 0.048484; 0.109152; 0.105551; 0.098708; 0.093042; 0.091734; 0.084706; 4.084928; 0.084922; 0.052913; 0.049484];
8-
L_jacobi = [20.378879; 0.535539; 0.078133; 0.481214; 0.225388; 2.794902; 0.530739; 0.424725; 0.459931; 21.860716; 0.155370; 1.836021; 0.575570];
9-
L_legendre = [0.101542; 0.070673; 0.030698; 0.075401; 0.099265; 0.075489; 0.070451; 0.075890; 0.040959; 4.348325; 0.056232; 0.033010; 0.030431];
10-
L_lobatto = [0.178613; 0.011121; 0.000107; 0.094005; 0.119870; 0.115679; 0.082939; 0.077295; 0.000196; 21.474618; 0.026952; 0.000390; 0.000152];
11-
L_radau = [0.134821; 0.011121; 0.000051; 0.081257; 0.124391; 0.103346; 0.084129; 0.078259; 0.000089; 22.084138; 0.024211; 0.000374; 0.000090];
12-
L_rectangle_midpoint = [0.074212; 0.000018; 0.000260; 0.018878; 0.020378; 0.019273; 0.018416; 0.018761; 0.000029; 1.586260; 0.028527; 0.000580; 0.000712];
13-
L_rombergs = [0.458671; 0.224695; 0.042407; 0.070613; 0.068976; 0.073960; 0.085664; 0.072760; 0.066720; 0.558451; 0.137821; 0.038345; 0.043788];
14-
L_simpsons = [0.024996; 0.000024; 0.000014; 0.020277; 0.030296; 0.022534; 0.020241; 0.023021; 0.000033; 13.500102; 0.001098; 0.000061; 0.000051];
15-
L_simpsons38 = [0.053542; 0.040926; 0.000011; 0.023485; 0.033142; 0.025603; 0.023186; 0.038315; 0.018009; 13.818143; 0.041548; 0.000095; 0.000150];
16-
L_trapezoidal = [0.150540; 0.035154; 0.000469; 0.016305; 0.022002; 0.017666; 0.015459; 0.017220; 0.012025; 12.852069; 0.082628; 0.001076; 0.001369];
3+
L_adaptive_simpsons = [0.455044; 0.051227; 0.000142; 0.037223; 0.031272; 0.027268; 0.032873; 0.024794; 0.092391; 11.442810; 0.040696; 0.001140; 0.000531];
4+
L_chebyshev1 = [1.009558; 0.335515; 0.044585; 0.081733; 0.091252; 0.087307; 0.082136; 0.102419; 0.060185; 0.339226; 0.086334; 0.046033; 0.043327];
5+
L_chebyshev2 = [0.132044; 0.066955; 0.045266; 0.095766; 0.112055; 0.103432; 0.098146; 0.110522; 0.063643; 8.680677; 0.092204; 0.048493; 0.042964];
6+
L_chebyshev3 = [0.220306; 0.071286; 0.051752; 0.137612; 0.093434; 0.116630; 0.104549; 0.099629; 0.067163; 3.208961; 0.091863; 0.053932; 0.048825];
7+
L_chebyshev4 = [0.136945; 0.070568; 0.051149; 0.092509; 0.092965; 0.098516; 0.093687; 0.112979; 0.065209; 4.127343; 0.091688; 0.052680; 0.048865];
8+
L_jacobi = [20.866783; 0.489243; 0.078353; 0.543790; 0.219776; 2.871823; 0.514692; 0.425720; 0.474459; 21.683630; 0.164953; 1.855387; 0.561469];
9+
L_legendre = [0.106171; 0.078795; 0.031839; 0.074370; 0.074632; 0.077306; 0.074217; 0.069197; 0.041277; 4.304367; 0.059233; 0.032885; 0.030395];
10+
L_lobatto = [0.190303; 0.012930; 0.000149; 0.085664; 0.140379; 0.115814; 0.095905; 0.090178; 0.000142; 21.309380; 0.026758; 0.000402; 0.000159];
11+
L_radau = [0.141603; 0.022506; 0.000051; 0.086428; 0.110123; 0.099484; 0.090253; 0.079221; 0.000128; 21.947621; 0.024431; 0.000389; 0.000146];
12+
L_rectangle_midpoint = [0.073207; 0.000017; 0.000273; 0.018856; 0.020056; 0.019106; 0.018988; 0.018468; 0.000033; 1.635390; 0.029941; 0.000537; 0.000739];
13+
L_rombergs = [0.502167; 0.249403; 0.043215; 0.076397; 0.084500; 0.065737; 0.083264; 0.070981; 0.062676; 0.559453; 0.139889; 0.037316; 0.041226];
14+
L_simpsons = [0.025735; 0.000020; 0.000016; 0.021620; 0.029775; 0.023050; 0.024037; 0.022381; 0.000023; 13.338188; 0.001048; 0.000050; 0.000041];
15+
L_simpsons38 = [0.055831; 0.042373; 0.000011; 0.025192; 0.031424; 0.025814; 0.025907; 0.024228; 0.016936; 13.800786; 0.039795; 0.000060; 0.000034];
16+
L_trapezoidal = [0.152162; 0.036755; 0.000453; 0.017747; 0.021522; 0.018655; 0.018124; 0.015779; 0.012151; 12.730575; 0.082469; 0.000966; 0.001362];
1717
N = length(L_simpsons);
1818

1919
# RMS of times

test/sinxx.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ sol_8 = 1.562225466889056293352345138804502677227824980541083456384;
77

88
printstyled("Integrating sin(x)/x from 0 to 100 and comparing it to the exact result.\n"; color = :red)
99
@testset "sinxx" begin
10-
printstyled("Running: adaptive_simpsons_rule with ε=1e-7\n"; color = :magenta)
10+
printstyled("Running: adaptive_simpsons_rule with ε=1e-8\n"; color = :magenta)
1111
# Using 1e-7 returns and error, despite it being accurate to an absolute and
1212
# relative tolerance of 1e-7
1313
@time @test adaptive_simpsons_rule(sinxx, 0, 100, 1e-8) sol_8

test/test_7.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ sol_7 = log(sqrt(2)*exp(1)/(sqrt(exp(2)+1)))+1/2*(exp(-2)-1)+1/3*(1-exp(-3));
66

77
printstyled("Integrating (x^3+1)/(x^4 (x+1)(x^2+1)) from 1 to e and comparing the result to the analytical solution of log(sqrt(2)*exp(1)/(sqrt(exp(2)+1)))+1/2*(exp(-2)-1)+1/3*(1-exp(-3))\n"; color = :red)
88
@testset "partfrac" begin
9-
printstyled("Running: adaptive_simpsons_rule with ε=1e-7\n"; color = :magenta)
9+
printstyled("Running: adaptive_simpsons_rule with ε=1e-8\n"; color = :magenta)
1010
# epsilon = 1e-7, despite leading to an absolute and relative error < 1e-7
1111
# leads to the test failing
1212
@time @test adaptive_simpsons_rule(partfrac, 1, exp(1), 1e-8) sol_7

0 commit comments

Comments
 (0)