-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmain.py
379 lines (312 loc) · 14.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
from __future__ import print_function
import warnings
warnings.simplefilter("ignore", UserWarning)
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import os
import sys
import pickle
import copy
cwd = os.getcwd()
sys.path.append(cwd+'/../')
import models
from torchvision import datasets, transforms
from torch.autograd import Variable
from decompose import Decompose
def save_state(model, acc):
print('==> Saving model ...')
state = {
'acc': acc,
'state_dict': model.state_dict(),
}
for key in state['state_dict'].keys():
if 'module' in key:
print(key)
state['state_dict'][key.replace('module.', '')] = \
state['state_dict'].pop(key)
# save
if args.model_type == 'original':
if args.arch == 'WideResNet' :
model_filename = '.'.join([args.arch,
args.dataset,
args.model_type,
'_'.join(map(str, args.depth_wide)),
'pth.tar'])
elif args.arch == 'ResNet' :
model_filename = '.'.join([args.arch,
args.dataset,
args.model_type,
str(args.depth_wide),
'pth.tar'])
else:
model_filename = '.'.join([args.arch,
args.dataset,
args.model_type,
'pth.tar'])
else: # retrain
if args.arch == 'WideResNet' :
model_filename = '.'.join([args.arch,
'_'.join(map(str, args.depth_wide)),
args.dataset,
args.model_type,
args.criterion,
str(args.pruning_ratio),
'pth.tar'])
elif args.arch == 'ResNet' :
model_filename = '.'.join([args.arch,
str(args.depth_wide),
args.dataset,
args.model_type,
args.criterion,
str(args.pruning_ratio),
'pth.tar'])
else :
model_filename = '.'.join([args.arch,
args.dataset,
args.model_type,
args.criterion,
str(args.pruning_ratio),
'pth.tar'])
torch.save(state, os.path.join('saved_models/', model_filename))
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data))
return
def test(epoch, evaluate=False):
global best_acc
global best_epoch
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
test_loss += criterion(output, target).data
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
acc = 100. * float(correct) / len(test_loader.dataset)
if (acc > best_acc):
best_acc = acc
best_epoch = epoch
if not evaluate:
save_state(model, best_acc)
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)'.format(
test_loss * args.batch_size, correct, len(test_loader.dataset),
100. * float(correct) / len(test_loader.dataset)))
print('Best Accuracy: {:.2f}%, Best Epoch: {}\n'.format(best_acc, best_epoch))
return
def adjust_learning_rate(optimizer, epoch, gammas, schedule):
lr = args.lr
for (gamma, step) in zip (gammas, schedule):
if(epoch>= step) and (args.epochs * 3 //4 >= epoch):
lr = lr * gamma
elif(epoch>= step) and (args.epochs * 3 //4 < epoch):
lr = lr * gamma * gamma
else:
break
print('learning rate : ', lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return
def weight_init(model, decomposed_weight_list, target):
for layer in model.state_dict():
decomposed_weight = decomposed_weight_list.pop(0)
model.state_dict()[layer].copy_(decomposed_weight)
return model
if __name__=='__main__':
# settings
parser = argparse.ArgumentParser(description='Neuron Merging Example')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--test-batch-size', type=int, default=256, metavar='N',
help='input batch size for testing (default: 256)')
parser.add_argument('--epochs', type=int, default=200, metavar='N',
help='number of epochs to train (default: 200)')
parser.add_argument('--lr', type=float, default=0.1, metavar='LR',
help='learning rate (default: 0.1)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float,
metavar='W', help='weight decay (default: 5e-4)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--arch', action='store', default='VGG',
help='network structure: VGG | ResNet | WideResNet | LeNet_300_100')
parser.add_argument('--pretrained', action='store', default=None,
help='pretrained model')
parser.add_argument('--evaluate', action='store_true', default=False,
help='whether to run evaluation')
parser.add_argument('--retrain', action='store_true', default=False,
help='whether to retrain')
parser.add_argument('--model-type', action='store', default='original',
help='model type: original | prune | merge')
parser.add_argument('--target', action='store', default='conv',
help='decomposing target: default=None | conv | ip')
parser.add_argument('--dataset', action='store', default='cifar10',
help='dataset: cifar10 | cifar100 | FashionMNIST')
parser.add_argument('--criterion', action='store', default='l1-norm',
help='criterion : l1-norm | l2-norm | l2-GM')
parser.add_argument('--threshold', type=float, default=1,
help='threshold (default: 1)')
parser.add_argument('--lamda', type=float, default=0.8,
help='lamda (default: 0.8)')
parser.add_argument('--pruning-ratio', type=float, default=0.7,
help='pruning ratio : (default: 0.7)')
parser.add_argument('--gammas', type=float, nargs='+', default=[0.1,0.1],
help='gammas : (default: [0.1,0.1])')
parser.add_argument('--schedule', type=int, nargs='+', default=[100,200],
help='schedule : (default: [100,200])')
parser.add_argument('--depth-wide', action='store', default=None,
help='depth and wide (default: None)')
args = parser.parse_args()
# check options
if not (args.model_type in [None, 'original', 'merge', 'prune']):
print('ERROR: Please choose the correct model type')
exit()
if not (args.target in [None, 'conv', 'ip']):
print('ERROR: Please choose the correct decompose target')
exit()
if not (args.arch in ['VGG','ResNet','WideResNet','LeNet_300_100']):
print('ERROR: specified arch is not suppported')
exit()
torch.manual_seed(args.seed)
args.cuda = not args.no_cuda and torch.cuda.is_available()
if args.cuda:
torch.cuda.manual_seed(args.seed)
torch.backends.cudnn.deterministic=True
# load data
num_classes = 10
if args.dataset == 'cifar10':
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
train_data = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
test_data = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=2)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=args.test_batch_size, shuffle=False, num_workers=2)
num_classes = 10
elif args.dataset == 'cifar100':
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
train_data = datasets.CIFAR100(root='./data', train=True, download=True, transform=transform_train)
test_data = datasets.CIFAR100(root='./data', train=False, download=True, transform=transform_test)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=2)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=args.test_batch_size, shuffle=False, num_workers=2)
num_classes = 100
elif args.dataset == 'FashionMNIST':
transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ])
train_data = datasets.FashionMNIST('data', train=True, download=True, transform=transform)
test_data = datasets.FashionMNIST('data', train=False, download=True, transform=transform)
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=args.test_batch_size, shuffle=False, **kwargs)
num_classes = 10
else :
pass
if args.depth_wide:
args.depth_wide = eval(args.depth_wide)
cfg = None
# make cfg
if args.retrain:
if args.target == 'conv' :
if args.arch == 'VGG':
if args.dataset == 'cifar10':
cfg = [32, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 256, 256, 256, 'M', 256, 256, 256]
elif args.dataset == 'cifar100':
cfg = [32, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 256, 'M', 256, 256, 256]
temp_cfg = list(filter(('M').__ne__, cfg))
elif args.arch == 'ResNet':
cfg = [16, 32, 64]
for i in range(len(cfg)):
cfg[i] = int(cfg[i] * (1 - args.pruning_ratio))
temp_cfg = cfg
elif args.arch == 'WideResNet':
cfg = [16, 32, 64]
temp_cfg = [16, 32, 32]
for i in range(len(cfg)):
cfg[i] = int(cfg[i] * (1 - args.pruning_ratio))
temp_cfg[i] = cfg[i] * args.depth_wide[1]
elif args.target == 'ip' :
if args.arch == 'LeNet_300_100':
cfg = [300,100]
for i in range(len(cfg)):
cfg[i] = round(cfg[i] * (1 - args.pruning_ratio))
temp_cfg = cfg
pass
# generate the model
if args.arch == 'VGG':
model = models.VGG(num_classes, cfg=cfg)
elif args.arch == 'LeNet_300_100':
model = models.LeNet_300_100(bias_flag=True, cfg=cfg)
elif args.arch == 'ResNet':
model = models.ResNet(int(args.depth_wide) ,num_classes,cfg=cfg)
elif args.arch == 'WideResNet':
model = models.WideResNet(args.depth_wide[0], num_classes, widen_factor=args.depth_wide[1], cfg=cfg)
else:
pass
if args.cuda:
model.cuda()
# pretrain
best_acc = 0.0
best_epoch = 0
if args.pretrained:
pretrained_model = torch.load(args.pretrained)
best_epoch = 0
if args.model_type == 'original':
best_acc = pretrained_model['acc']
model.load_state_dict(pretrained_model['state_dict'])
# weight initialization
if args.retrain:
decomposed_list = Decompose(args.arch, pretrained_model['state_dict'], args.criterion, args.threshold, args.lamda, args.model_type, temp_cfg, args.cuda).main()
model = weight_init(model, decomposed_list, args.target)
# print the number of model parameters
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print('Total parameter number:', params, '\n')
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
criterion = nn.CrossEntropyLoss()
if args.evaluate:
test(0, evaluate=True)
exit()
for epoch in range(1, args.epochs + 1):
adjust_learning_rate(optimizer, epoch, args.gammas, args.schedule)
train(epoch)
test(epoch)